Flatness of the Commutator Map on $S L_{n}$

Zhipeng Lu
Universität Göttingen

August 2019, Zurich

Outline

Introduction
Outline of proof
Topological
background

Introduction

Outline of proof

Topological background

Commutator map

Introduction

Introduction
Outline of proof
Topological
background

- Definition : for any $k \in \mathbb{Z}_{+}$and any group G, $\phi_{k}=[,]^{k}: G^{2 k} \rightarrow G$ via

$$
\phi_{k}\left(a_{1}, b_{1}, a_{2}, b_{2}, \cdots, a_{k}, b_{k}\right)=\left[a_{1}, b_{1}\right] \cdots\left[a_{k}, b_{k}\right],
$$

where $\left[a_{i}, b_{i}\right]=a_{i} b_{i} a_{i}^{-1} b_{i}^{-1}$.
Question : is ϕ_{k} flat for any simple algebraic group G and $k \geq 1$?

Commutator map

Introduction

- Definition : for any $k \in \mathbb{Z}_{+}$and any group G, $\phi_{k}=[,]^{k}: G^{2 k} \rightarrow G$ via

$$
\phi_{k}\left(a_{1}, b_{1}, a_{2}, b_{2}, \cdots, a_{k}, b_{k}\right)=\left[a_{1}, b_{1}\right] \cdots\left[a_{k}, b_{k}\right],
$$

where $\left[a_{i}, b_{i}\right]=a_{i} b_{i} a_{i}^{-1} b_{i}^{-1}$.

- Question : is ϕ_{k} flat for any simple algebraic group G and $k \geq 1$?

Flatness

Introduction

- For G a (connected) algebraic group over \mathbb{C}, the fiber $\phi_{k}^{-1}(g), \forall g \in G$, is an algebraic set, hence inherits both the Zariski and Euclidean topology of $G^{2 k}$. The the commutator map ϕ_{k} is flat \leftrightarrow the fibers $\phi_{k}^{-1}(g)$ all have equal dimension.
- Example: For $G=G L_{n}(\mathbb{C})$,

with image in $S L_{n}(\mathbb{C})$. For $k \geq 2$, the commutator map is flat and
$\operatorname{dim} \phi_{k}^{-1}(g)=(2 k-1) n^{2}+1, \forall g \in S L_{n}(\mathbb{C})$.

Flatness

Introduction

- For G a (connected) algebraic group over \mathbb{C}, the fiber $\phi_{k}^{-1}(g), \forall g \in G$, is an algebraic set, hence inherits both the Zariski and Euclidean topology of $G^{2 k}$. The the commutator map ϕ_{k} is flat \leftrightarrow the fibers $\phi_{k}^{-1}(g)$ all have equal dimension.
- Example : For $G=G L_{n}(\mathbb{C})$,

$$
\phi_{k}: G L_{n}(\mathbb{C})^{2 k} \rightarrow G L_{n}(\mathbb{C})
$$

with image in $S L_{n}(\mathbb{C})$. For $k \geq 2$, the commutator map is flat and

$$
\operatorname{dim} \phi_{k}^{-1}(g)=(2 k-1) n^{2}+1, \forall g \in S L_{n}(\mathbb{C})
$$

Problem

Introduction

Introduction

- For $k=1, \phi_{1}=[]:, G L_{n} \times G L_{n} \rightarrow S L_{n}$ is not flat: Theorem (Larsen-L)

$$
\begin{aligned}
& \qquad \operatorname{dim}[,]^{-1}(g)=n^{2}+1, \forall g \in S L_{n}(K) \text { not scalar. } \\
& \text { For } \operatorname{ord}(\xi)=m \text { in } K^{\times} \\
& \qquad \operatorname{dim}[,]^{-1}\left(\xi I_{n}\right)=n^{2}+m
\end{aligned}
$$

Remarks

Introduction

- The result is not just about linear algebra.
- For other families of groups of Lie type, the result is worse. For $G=B_{2}$ the symplectic group of rank 4, $\operatorname{dim}[,]^{-1}(g)$ are not all equal for g not scalar.

Remarks

Introduction

Introduction

- The result is not just about linear algebra.
- For other families of groups of Lie type, the result is worse. For $G=B_{2}$ the symplectic group of rank 4, $\operatorname{dim}[,]^{-1}(g)$ are not all equal for g not scalar.

Previous results

Introduction

Introduction

For $k \geq 2, \phi_{k}=[,]^{k}: G^{2 k} \rightarrow G$ is flat for any simple algebraic group G.

- Jun Li (1993) first proved it for $G(\mathbb{C})$ using geometric methods.
- Liebeck-Shalev (2010) gave an algebraic approach applicable over fields of finite characteristics.

Previous results

For $k \geq 2, \phi_{k}=[,]^{k}: G^{2 k} \rightarrow G$ is flat for any simple algebraic group G.

- Jun Li (1993) first proved it for $G(\mathbb{C})$ using geometric methods.
- Liebeck-Shalev (2010) gave an algebraic approach applicable over fields of finite characteristics.

Frobenius' formula

Outline of proof

It starts with a character formula by Frobenius

Theorem (Frobenius, 1896)

For G any finite group and $g \in G$, the number of solutions in $G^{2 k}$ to the equation $\left[x_{1}, y_{1}\right] \cdots\left[x_{k}, y_{k}\right]=g$ for any $k \geq 1$ equals

$$
|G|^{2 k-1} \sum_{\chi \in \operatorname{Irr}(\mathrm{G})} \frac{\chi(g)}{\chi(1)^{2 k-1}},
$$

where $|G|$ denotes the order of the group and $\operatorname{Irr}(\mathrm{G})$ the set of all irreducible characters of G.

Zeta function of a finite group

Outline of proof

For any finite group G define the Witten zeta function, $\forall t>0$

$$
\zeta^{G}(t)=\sum_{\chi \in \operatorname{Irr}(\mathrm{G})} \chi(1)^{-t}
$$

Theorem (Liebeck-Shalev, 2005)
For any (quasi-) simple algebraic group G defined over \mathbb{F}_{q},

$$
\zeta^{G\left(\mathbb{F}_{q^{m}}\right)}(t)<C
$$

uniformly for any integer $m \geq 1$ and real $t>1$.

Quantitative bound of $\left|\phi_{k}^{-1}(g)\right|$ for $k \geq 2$

Outline of proof

(Aizenbud-Avni)
By Frobenius' formula and Liebeck-Shalev's theorem on zeta function $(k \geq 2)\left(\phi_{G, k}\right.$ denotes ϕ_{k} on $\left.G\right)$

$$
\begin{aligned}
& \left|\phi_{G\left(q^{m}\right), k}^{-1}(g)\right| \\
= & \left|G\left(\mathbb{F}_{q^{m}}\right)\right|^{2 k-1}\left|\sum_{\chi \in \operatorname{Irr}\left(\mathrm{G}\left(\mathbb{F}_{\left.q^{m}\right)}\right)\right.} \frac{\chi(g)}{\chi(1)^{2 k-1}}\right| \\
\leq & \left|G\left(\mathbb{F}_{q^{m}}\right)\right|^{2 k-1} \sum_{\chi \in \operatorname{Irr}\left(\mathrm{G}\left(\mathbb{F}_{\mathbf{q}^{m}}\right)\right)} \frac{1}{\chi(1)^{2 k-2}} \\
= & \left|G\left(\mathbb{F}_{q^{m}}\right)\right|^{2 k-1} \zeta^{G\left(\mathbb{F}_{q^{m}}\right)}(2 k-2) \leq C\left|G\left(\mathbb{F}_{q^{m}}\right)\right|^{2 k-1}
\end{aligned}
$$

Revise bound for $k=1, G=S L_{n}\left(\mathbb{F}_{q}\right)$

Outline of proof

Liebeck-Shalev theorem is not applicable to $\phi_{1}=[$, since

$$
\zeta^{G\left(\mathbb{F}_{q^{m}}\right)}(2 k-2)=\zeta^{G\left(\mathbb{F}_{q^{m}}\right)}(0)
$$

is not uniformly bounded. Instead we use a character ratio estimate

Theorem (Larsen-L, 2018)
For $g \in S L_{n}\left(\mathbb{F}_{q}\right)$ non-central,

$$
\sum_{\chi \in \operatorname{Irr}\left(\mathrm{GL}_{\mathbf{n}}\left(\mathbb{F}_{\mathrm{q}}\right)\right)} \frac{\chi(g)}{\chi(1)}=O(q)
$$

Proof of bound for $k=1, G=S L_{n}\left(\mathbb{F}_{q}\right)$

Outline of proof
(Larsen-L)
By Frobenius' formula, for $g \in S L_{n}\left(\mathbb{F}_{q}\right)$ non-central

$$
\begin{aligned}
& \left|\phi_{1}^{-1}(g)\right| \\
= & \left|G L_{n}\left(\mathbb{F}_{q}\right)\right| \sum_{\chi \in \operatorname{Irr}\left(\mathrm{GL}_{\mathrm{n}}\left(\mathbb{F}_{\mathrm{q}}\right)\right)} \frac{\chi(g)}{\chi(1)} \\
= & \left|G L_{n}\left(\mathbb{F}_{q}\right)\right| O(q) \\
= & O\left(q^{n^{2}+1}\right) .
\end{aligned}
$$

For $\phi_{1}=[$,$] on S L_{n}\left(\mathbb{F}_{q}\right)$, this is saying

$$
\left|\phi_{1}^{-1}(g)\right|=O\left(\left|S L_{n}\left(\mathbb{F}_{q}\right)\right|\right)
$$

Lang-Weil bound

Outline of proof

The above is an inequality about dimension due to Theorem (Lang-Weil bound)
For V any variety over $\overline{\mathbb{F}}_{p}$ with $\operatorname{dim} V=f$ and e components of top dimension f,

$$
|V(q)|=(e+o(1)) q^{f}
$$

for all large enough $q=p^{r}$.
For any $k \geq 1$ and (quasi-) simple G,

$$
\operatorname{dim} \phi_{G, k}^{-1}(g) \leq(2 k-1) \operatorname{dim} G
$$

Actually $\operatorname{dim} \phi_{G, k}^{-1}(g)=(2 k-1) \operatorname{dim} G$ since the other direction is trivial by definition.

Grothendieck's theorem, miracle flatness

Outline of proof

The dimension equality over $\overline{\mathbb{F}}_{p}$ may be turned into over \mathbb{C} by Lefschetz principle in a cheap model theoretic way. To be more careful we use scheme language

Theorem (EGA IV, 9.2.6.1) If $f: X \rightarrow S$ is a scheme morphism of finite presentation, then the function $s \mapsto \operatorname{dim}\left(f^{-1}(s)\right)$ is locally constructible. For $g \in G(\overline{\mathbb{Q}}), X=\phi_{G, k}^{-1}(g)$ is definable over \mathbb{Z}, hence has structure morphism to $S=\operatorname{Spec} \mathbb{Z}$ and $f^{-1}((p))=X / \mathbb{F}_{p}$ has some fiber of q-points as closed points. At last, use Cohen-Macaulay machinery (miracle flatness) to turn the dimension equality into flatness.

Principle G-bundle

Topological background

Let S^{g} be a compact Riemann surface of genus g, which can be uniformized by identifying edges of a $4 g$-gon as follows $(g \leq 3)$

Principle G-bundle

Topological background

- The fundamental group of S^{g} has the presentation

$$
\pi_{1}\left(S^{g}\right)=\left\langle a_{1}, b_{1}, \cdots, a_{g}, b_{g} \mid\left[a_{1}, b_{1}\right] \cdots\left[a_{g}, b_{g}\right]=1\right\rangle
$$

- For any group G, every $\rho \in \operatorname{Hom}\left(\pi_{1}\left(\mathrm{~S}^{\mathrm{g}}\right), \mathrm{G}\right)$ is determined only by the relation

$$
\left[\rho\left(a_{1}\right), \rho\left(b_{1}\right)\right] \cdots\left[\rho\left(a_{g}\right), \rho\left(b_{g}\right)\right]=1 .
$$

Hence

$$
\operatorname{Hom}\left(\pi_{1}\left(\mathrm{~S}^{\mathrm{g}}\right), \mathrm{G}\right) \leftrightarrow \phi_{\mathrm{g}}^{-1}(1),
$$

i.e. fiber of the commutator map over the identity can be identified with the representation space of a surface group into G. What about any other fiber $\phi_{g}^{-1}(\mathfrak{g})$ over arbitrary $\mathfrak{g} \in G$?

Principle G-bundle

Topological background

- The fundamental group of S^{g} has the presentation

$$
\pi_{1}\left(S^{g}\right)=\left\langle a_{1}, b_{1}, \cdots, a_{g}, b_{g} \mid\left[a_{1}, b_{1}\right] \cdots\left[a_{g}, b_{g}\right]=1\right\rangle
$$

- For any group G, every $\rho \in \operatorname{Hom}\left(\pi_{1}\left(\mathrm{~S}^{\mathrm{g}}\right), \mathrm{G}\right)$ is determined only by the relation

$$
\left[\rho\left(a_{1}\right), \rho\left(b_{1}\right)\right] \cdots\left[\rho\left(a_{g}\right), \rho\left(b_{g}\right)\right]=1
$$

Hence

$$
\operatorname{Hom}\left(\pi_{1}\left(\mathrm{~S}^{\mathrm{g}}\right), \mathrm{G}\right) \leftrightarrow \phi_{\mathrm{g}}^{-1}(1),
$$

i.e. fiber of the commutator map over the identity can be identified with the representation space of a surface group into G. What about any other fiber $\phi_{g}^{-1}(\mathfrak{g})$ over arbitrary $\mathfrak{g} \in G ?$

Commutator fiber, topological interpretation

Topological background

The fundamental group of $S^{g} \backslash\{*\}$ can be presented as
$\pi_{1}\left(S^{g} \backslash\{*\}\right)=\left\langle a_{1}, b_{1}, \cdots, a_{g}, b_{g}, c \mid\left[a_{1}, b_{1}\right] \cdots\left[a_{g}, b_{g}\right] c=1\right\rangle$.
And any $\rho \in \operatorname{Hom}\left(\pi_{1}\left(\mathrm{~S}^{\mathrm{g}} \backslash\{*\}\right), \mathrm{G}\right)$ is determined by

$$
\left[\rho\left(a_{1}\right), \rho\left(b_{1}\right)\right] \cdots\left[\rho\left(a_{g}\right), \rho\left(b_{g}\right)\right]=\rho(c)^{-1}
$$

Hence
$\operatorname{Hom}\left(\pi_{1}\left(\mathrm{~S}^{\mathrm{g}} \backslash\{*\}\right), \mathrm{G}\right) \leftrightarrow \phi_{\mathrm{g}}^{-1}(\mathrm{G})$,
with $\phi_{g}^{-1}(\mathfrak{g})$ corresponding to the representation space of $\pi_{1}\left(S^{g} \backslash\{*\}\right)$ into G with the free quantifier c mapped to \mathfrak{g}.

Construction of Flat bundle

Topological background

For any $\rho \in \operatorname{Hom}\left(\pi_{1}\left(\mathrm{~S}^{\mathrm{g}} \backslash\{*\}\right), \mathrm{GL}_{\mathrm{n}}(\mathbb{C})\right), \mathrm{n} \geq 1$, we can define a complex vector bundle over $S^{g} \backslash\{*\}$ as follows : let X be the universal cover of $S^{g} \backslash\{*\}$ with deck transformation group $\pi=\pi_{1}\left(S^{g} \backslash\{*\}\right)$, then $X \times \mathbb{C}^{n}$ is equipped with a π-action

$$
\alpha \cdot(x, v)=(\alpha \cdot x, \rho(\alpha) v), \forall \alpha \in \pi, x \in X, v \in \mathbb{C}^{n}
$$

Since π acts properly and freely on X hence also $X \times \mathbb{C}^{n}$,

$$
X \times \mathbb{C}^{n} / \pi \rightarrow X / \pi=S^{g} \backslash\{*\}
$$

is a rank n bundle, called the flat bundle with holonomy ρ, denoted by E_{ρ}. Note that E_{ρ} inherits a flat connection (zero curvature) from the trivial bundle.

Example of $g=1$

Topological background

Especially when $g=1, S^{g} \backslash\{*\}$ deformation retracts to a wedge of two circles, which has a universal cover as the Cayley graph of $F_{2}=*$ as follows $\left(F_{2}=\langle a, b\rangle\right)$

Figure - Hatcher page 77

Example of $g=1$

Topological background

Hence any flat bundle with holonomy ρ can be seen as the quotient of $T \times \mathbb{C}^{n}, T$ the fractal tree in the picture above. In particular, F_{2} is linearly realizable, say by the Sanov representation

$$
\left\langle\left(\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right),\left(\begin{array}{ll}
1 & 0 \\
2 & 1
\end{array}\right)\right\rangle .
$$

Hence the flat structure of E_{ρ} 's over $S^{g} \backslash\{*\}(g=1)$ naturally comes from the trivial bundle $T \times \mathbb{C}^{n}$ quotient by linear representation of F_{2}. Similar for any $g \geq 2$.

Holonomy of a connection in a vector bundle

Topological background

Inversely, we can construct a linear representation of π from a flat vector bundle using holonomy. Let E be a rank n vector bundle over $S^{g} \backslash\{*\}$ and ∇ the connection on E. Given any smooth loop $\gamma:[0,1] \rightarrow S^{g} \backslash\{*\}$, based at x, the connection defines a linear invertible parallel transport $P_{\gamma}: E_{x} \rightarrow E_{x}$ along the loop, hence a linear transformation in $G L\left(E_{x}\right)=G L_{n}(\mathbb{C})$.

Figure - C. Ravelli, Quantum Gravity, page 11

Holonomy of a connection in a vector bundle

Topological background

Define

$$
\operatorname{Hol}_{\mathrm{x}}(\nabla)=\left\{\mathrm{P}_{\gamma} \in \mathrm{GL}\left(\mathrm{E}_{\mathrm{x}}\right) \mid \gamma \text { a loop based at } \mathrm{x}\right\} .
$$

Clearly any other base point gives a conjugation of the above group, hence up to isomorphism, we denote it by $\operatorname{Hol}(\nabla)$ and call it the holonomy group of the connection. If ∇ is flat, contractible loops gives trivial transport, resulting a surjective group homomorphism $\pi \rightarrow \operatorname{Hol}(\nabla) \subset \mathrm{GL}_{\mathrm{n}}(\mathbb{C})$ which sends $[\gamma]$ to P_{γ}. This gives a representation of π into $G L_{n}(\mathbb{C})$ with image $\operatorname{Hol}(\nabla)$.

Summary of "geometric interpretation"

Topological background

By construction, the flat bundle of holonomy E_{ρ}, any $\rho \in \operatorname{Hom}\left(\pi, \mathrm{GL}_{\mathrm{n}}(\mathbb{C})\right)$ with the natural flat connection gives back the representation ρ through holonomy.
Geometric setting of commutator map
Thus far, we get the following identifications

$$
\phi_{g}^{-1}\left(S L_{n}(\mathbb{C})\right) \leftrightarrow \operatorname{Hom}\left(\pi, \mathrm{GL}_{\mathrm{n}}(\mathbb{C})\right)
$$

$\leftrightarrow\left\{\right.$ flat complex vector bundles over $\left.S^{g} \backslash\{*\}\right\}$,
via

$$
\phi_{g}^{-1}(\mathfrak{g}) \leftrightarrow\left\{\rho: \pi \rightarrow G L_{n}(\mathbb{C}), \rho(c)=\mathfrak{g}^{-1}\right\}
$$

$\leftrightarrow\left\{\right.$ complex vector bundle with $\left.\nabla_{c}=\mathfrak{g}^{-1}\right\}$.

Topological background

THANK YOU

