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» Definition : for any k& € Z, and any group G,
o =1[]": G* = G via
¢k(a17 bla az, b2) Tt A, bk‘) = [ala bl] to [(Ik;, bk‘]a

where [a;, b;] = aibiai_lbi_l.
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» Definition : for any k& € Z, and any group G,
o =1[]": G* = G via
¢k(a17 bla az, b2) T, Ok, bk‘) = [ala bl] te [(Ik;, bk‘]a

where [a;, b;] = aibiai_lbi_l.
» Question : is ¢ flat for any simple algebraic group
Gand k>17
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» For GG a (connected) algebraic group over C, the fiber o
qS];l(g),Vg € @, is an algebraic set, hence inherits background
both the Zariski and Euclidean topology of G?*. The
the commutator map ¢y is flat <+ the fibers ¢, '(g)
all have equal dimension.
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» For GG a (connected) algebraic group over C, the fiber o
qS];l(g),Vg € @, is an algebraic set, hence inherits background
both the Zariski and Euclidean topology of G?*. The
the commutator map ¢y is flat <+ the fibers ¢, '(g)
all have equal dimension.

» Example : For G = GL,(C),
Ox : GLn(C)" = GLy(C),

with image in SL,,(C). For k > 2, the commutator
map is flat and

dim ¢, ' (g) = (2k — 1)n* 4+ 1,Vg € SL,(C).
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» For k=1, ¢1 =[,] : GL, x GL, — SL, is not flat :

Theorem (Larsen-L)

dim[,]7!(g) = n* +1,Vg € SL,(K) not scalar.
For ord(§) =m in K*,

diml[, |7} (&1,) = n? + m.
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» The result is not just about linear algebra.
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» The result is not just about linear algebra.

» For other families of groups of Lie type, the result is
worse. For G = Bj the symplectic group of rank 4,
dim[,]7!(g) are not all equal for g not scalar.
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For k > 2, ¢ = [,]F : G?* — @ is flat for any simple
algebraic group G.
» Jun Li (1993) first proved it for G(C) using geometric
methods.
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For k > 2, ¢ = [,]F : G?* — @ is flat for any simple
algebraic group G.
» Jun Li (1993) first proved it for G(C) using geometric
methods.

» Liebeck-Shalev (2010) gave an algebraic approach
applicable over fields of finite characteristics.
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It starts with a character formula by Frobenius background

Theorem (Frobenius, 1896)

For G any finite group and g € G, the number of solutions
in G to the equation [x1,11] - [z, yr] = g for any k > 1
equals

|G‘2k_1 Z X(g)

2k—1"
x€lrr(G) (1)

where |G| denotes the order of the group and Irr(G) the
set of all irreducible characters of G.



Zeta function of a finite group
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For any finite group G define the Witten zeta
function, Vt > 0

x€Irr(G)

Theorem (Liebeck-Shalev, 2005)
For any (quasi-)simple algebraic group G defined over Fy,

CG(qu) (t) <C

uniformly for any integer m > 1 and real t > 1.
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Quantitative bound of |¢, ' (g)| for k > 2
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(Aizenbud-Avni) .
By Frobenius’ formula and Liebeck-Shalev’s theorem e
on zeta function (k > 2) (¢¢ r denotes ¢ on G)

96t 1(9)

eEmP |y

X€EIrr(G(Fym))
_ 1
<IGE)PT YT ——y
x(1)
X€EIrr(G(Fym))
=|G(Fgm)|*71¢CEm) (2k — 2) < O|G(Fgm)** .



Revise bound for k =1, G = SL,(F,)
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Liebeck-Shalev theorem is not applicable to ¢ = [, ] Topological
. background
since

(O (2k —2) = (“Fm)(0)

is not uniformly bounded. Instead we use a character
ratio estimate

Theorem (Larsen-L, 2018)
For g € SL,(F,) non-central,

> Mo

x€Irr(GLn (Fq))



Proof of bound for k =1, G = SL,(F,)
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(LaI‘SGIPL) Topological
By Frobenius’ formula, for g € SL,(IF,) non-central background
|67 (9)]
x(9)
=|GL.(Fy)| ). S
x(1)
X€EIrr(GLn (Fq))
:O(qanrl).

For ¢1 = [,] on SL,(F,), this is saying

|61 (9)] = OIS Ln(Fy)])-



Lang-Weil bound
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The above is an inequality about dimension due to
Topological

Theorem (Lang-Weil bound) background

For V' any variety over I_Fp with dimV = f and e
components of top dimension f,

V(g)| = (e + o(1))q’

for all large enough ¢ = p".
For any k& > 1 and (quasi-)simple G,

dim ¢} (9) < (2k — 1) dim G.

Actually dim ¢} (9) = (2k — 1) dim G since the other
direction is trivial by definition.



Grothendieck’s theorem, miracle flatness
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The dimension equality over I_Fp may be turned into over C 7701
by Lefschetz principle in a cheap model theoretic way. To
be more careful we use scheme language

Theorem (EGA IV, 9.2.6.1)

If f: X — S is a scheme morphism of finite presentation,
then the function s — dim(f~1(s)) is locally constructible.
For g € G(Q), X = q%}k(g) is definable over Z, hence has
structure morphism to S = Spec Z and f~1((p)) = X/F,

has some fiber of g-points as closed points.

At last, use Cohen-Macaulay machinery (miracle flatness)
to turn the dimension equality into flatness.



Principle G-bundle
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Let S9 be a compact Riemann surface of genus g, which Outline of proof
can be uniformized by identifying edges of a 4g-gon as
follows (g < 3)
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» The fundamental group of SY has the presentation Oine G et

m1(89) = (a1,b1,- - ,ag,bg | [a1,b1] - - [ag, bg] = 1).
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» The fundamental group of SY has the presentation Ol of! jpReeit
m1(57) = (a1, b1, ag, by | [ar,b1] - - - [ag, bg] = 1).

» For any group G, every p € Hom(7(S#8),G) is
determined only by the relation

[p(a1), p(b1)] - - - [plag), p(bg)] = 1.

Hence
Hom(;(S8), G) < ¢ ' (1),

i.e. fiber of the commutator map over the identity can
be identified with the representation space of a
surface group into G. What about any other fiber
gbg_l(g) over arbitrary g € G ?



Commutator fiber, topological interpretation
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The fundamental group of SY \ {x} can be presented as
7-‘-1(*99\{*}) = <CL1, blv ©rt o, Qg bga c | [ala bl] T [(Ig, bg]C = 1>
And any p € Hom(m (S8 \ {}),G) is determined by

[p(al)v p(bl)] e [p(ag)7 p(bg)] = ,O(C)_l.

Hence
Hom (1 (S8 \ {*}),G) + ¢,(G),

with ¢;1(g) corresponding to the representation space of
m1 (59 \ {*}) into G with the free quantifier ¢ mapped to g.



Construction of Flat bundle

Topological background

For any p € Hom(m (S8 \ {*}),GL,(C)),n > 1, we can
define a complex vector bundle over S9 \ {x} as follows :
let X be the universal cover of S9 \ {x} with deck
transformation group m = m1(SY \ {*}), then X x C" is
equipped with a m-action

a-(z,v) = (a-z,pla)v),Ya e myz € X,veC"
Since 7 acts properly and freely on X hence also X x C",
X xC"/m— X/m =5\ {«},

is a rank n bundle, called the flat bundle with holonomy p,
denoted by E,. Note that E, inherits a flat connection
(zero curvature) from the trivial bundle.
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Example of g =1
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Especially when g = 1, 89 \ {*} deformation retracts to a
wedge of two circles, which has a universal cover as the
Cayley graph of F = x as follows (Fy = (a, b))

Outline of proof

I’
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FI1GURE — Hatcher page 77
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Hence any flat bundle with holonomy p can be seen as the
quotient of T' x C", T the fractal tree in the picture above.
In particular, F» is linearly realizable, say by the Sanov

representation
1 2 10
0 1/7\2 1 '

Hence the flat structure of E,’s over S9 \ {*} (g =1)
naturally comes from the trivial bundle 7" x C" quotient
by linear representation of Fy. Similar for any g > 2.



Holonomy of a connection in a vector bundle

Topological background

Introduction

Inversely, we can construct a linear representation of 7
from a flat vector bundle using holonomy. Let E be a rank
n vector bundle over SY \ {*} and V the connection on E.
Given any smooth loop v : [0,1] — SY9 ~\ {x}, based at z,
the connection defines a linear invertible parallel transport
P, : E, — E, along the loop, hence a linear
transformation in GL(E;) = GL,(C).

Outline of proof

F1cURE — C. Ravelli, Quantum Gravity, page 11



Holonomy of a connection in a vector bundle
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Define
Hol(V) = {Py € GL(Ex) | v a loop based at x}.

Clearly any other base point gives a conjugation of the
above group, hence up to isomorphism, we denote it by
Hol(V) and call it the holonomy group of the connection.
If V is flat, contractible loops gives trivial transport,
resulting a surjective group homomorphism

m — Hol(V) C GL,(C) which sends [y] to P,. This gives a
representation of 7w into GL,(C) with image Hol(V).



Summary of "geometric interpretation”
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By construction, the flat bundle of holonomy E,, any
p € Hom(m, GL,(C)) with the natural flat connection
gives back the representation p through holonomy.

Geometric setting of commutator map
Thus far, we get the following identifications

¢y (SLn(C)) <+ Hom(m, GLy(C))

+ {flat complex vector bundles over S9 \ {x}},
via
¢y (8) ¢+ {p: 7 = GLa(C),p(c) =g}

< {complex vector bundle with V. = g~'}.



THANK YOU

Q>




	Introduction
	Outline of proof
	Topological background

