Hypergeometric Integrals of Motion and Affine Gaudin Models

Charles Young

University of Hertfordshire, U.K.

Representation Theory and Integrable Systems ETH Zürich August 2019

based on work with Sylvain Lacroix and Benoît Vicedo [1804.01480] (Adv. Math.) and [1804.06751] (ATMP)

Quantum Gaudin Model

- Let g be any symmetrizable Kac-Moody algebra
- Assign irreducible highest-weight g-modules $\{L_{\lambda_i}\}$ to marked points $\{z_i\}$ in \mathbb{C} :

Bethe ansatz for Gaudin models

Gaudin model solvable by a form of Bethe ansatz:

- Pick $m \ge 0$ additional marked points t_j (Bethe roots)
- Associate to each a simple root α_{c(j)}
- Construct Bethe vector $\psi = \psi(\{z_i\}, \{\lambda_i\}, \{t_j\}, \{\alpha_{c(j)}\})$

Theorem: if Bethe roots $\{t_j\}$ obey Bethe equations then ψ is a joint eigenvector of

the \mathcal{H}_i , with explicit eigenvalues.

$$-\sum_{i=1}^{N} \frac{(\lambda_{i} | \alpha_{c(j)})}{t_{j} - z_{i}} + \sum_{\substack{i=1\\i \neq j}}^{m} \frac{(\alpha_{c(i)} | \alpha_{c(j)})}{t_{j} - t_{i}} \stackrel{\frown}{=} 0, \quad j = 1, \dots, m.$$
$$E_{i} := \sum_{\substack{j=1\\j \neq i}}^{N} \frac{(\lambda_{i} | \lambda_{j})}{z_{i} - z_{j}} - \sum_{j=1}^{m} \frac{(\lambda_{i} | \alpha_{c(j)})}{z_{i} - t_{j}}, \quad i = 1, \dots, N.$$

Theorem holds for any symmetrizable Kac-Moody algebra g. (General proof is in terms of hyperplane arrangements [Schechtman & Varchenko, '91])

Finite type \mathfrak{g} – Gaudin algebra and Opers

For \mathfrak{g} of finite type much more is known:

$$\mathcal{H}_i \in \mathscr{B} \subset U(\mathfrak{g})^{\otimes N}$$

Bethe Algebra

[Feigin Frenkel Reshetikhin]

(for which explicit formulas exist [Talalaev] [Molev])

• ψ is a joint eigenvector for the entire algebra ${\mathscr B}$

[Feigin Frenkel Reshetikhin]

- Joint eigenvalues encoded as functions on a space of opers
- (Completeness of Bethe ansatz) For integral dominant highest weights λ_i , can <u>identify</u> image of \mathscr{B} in End $\bigotimes_{i=1}^N L_{\lambda_i}$ with algebra of functions on a certain well-defined space of monodromy-free opers.

[Mukhin Tarasov Varchenko '09] (type A) [Rybnikov '18] (all finite types)

Main questions:

Suppose ${\mathfrak g}$ is of untwisted affine type

- 1. Are there higher Gaudin Hamiltonians?
- 2. If yes, then what parameterizes their eigenvalues? Functions on opers? What opers? What do such functions look like?

 \dots important questions for mathematical physics because affine (quantum) Gaudin models are closely related to integrable (quantum) field theories in 1+1 dimensions

Plan of this talk:

- (i) Define a notion of affine opers, generalizing definitions from finite type in the most direct way possible.
- (ii) Main result: the functions on the space of affine opers are of a very different character than in the finite case: they are given by hypergeometric-type integrals over cycles of a twisted homology

defined by the levels of the modules at the marked points.

- (iii) Conjecture: these integrals are the eigenvalues of (higher) Gaudin Hamiltonians (... prompts a conjecture about the form of such Hamiltonians themselves)
- (iv) Check this conjecture in some special cases

Review: Opers and Miura opers in finite types

Suppose \mathfrak{g} is of finite type. Let ${}^{L}\mathfrak{g}$ be its Langlands dual (also of finite type).

- ▶ Cartan decomposition: ${}^{L}\mathfrak{g} = {}^{L}\mathfrak{n}_{-} \oplus {}^{L}\mathfrak{h} \oplus {}^{L}\mathfrak{n}_{+}$
- Chevalley generators: \check{f}_i , \check{e}_i , $i = 1, \ldots, \ell$.
- Simple coroots: $\alpha_i := [\check{e}_i, \check{f}_i]$ (are the simple roots of \mathfrak{g})

Definition: A <u>Miura ^Lg-oper</u> is a connection of the form

For us, u(z) is of the form

$$u(z) = -\sum_{i=1}^{N} \frac{\lambda_i}{z - z_i} + \sum_{j=1}^{m} \frac{\alpha_{c(j)}}{z - t_j}$$

and encodes the marked points $\{z_i\}$, Bethe roots $\{t_j\}$, highest weights $\{\lambda_i\}$ and "colours" of the Bethe roots $\{c(j)\}$.

Charles Young

Hypergeometric Integrals of Motion and Affine Gaudin Models

[Frenkel]

Definition: An ${}^{L}\mathfrak{g}$ -oper is a gauge equivalence class $[\nabla]$ of connections of the form

$$\nabla = d + \left(\begin{array}{c} p_{-1} + b(z) \end{array} \right) dz$$

rational function valued in Borel ${}^L\mathfrak{b}_+\cong{}^L\mathfrak{h}\oplus{}^L\mathfrak{n}_+$

under the gauge action of the unipotent subgroup ${}^{L}\!N = \exp({}^{L}\mathfrak{n}_{+})$.

Fact: Each oper $[\nabla]$ has a unique representative of canonical form

Corollary: These $v_r(z)$ are "good coordinates" on the space of opers.

Each Miura oper ∇ defines an underlying oper $[\nabla]$

Fact: The Bethe equations precisely ensure $v_r(z)$ have poles only at the marked points z_1, \ldots, z_N (and ∞) and not at the Bethe roots t_1, \ldots, t_m .

Dictionary:

Miura oper $\nabla \longleftrightarrow u(z) \in {}^{L}\mathfrak{h} \longleftrightarrow$ joint eigenvector ψ of Gaudin Hamiltonians

Underlying oper $[\nabla] \longleftrightarrow \{v_r(z) \in \mathbb{C}\}_{r \in E} \longleftrightarrow$ eigenvalues of all Gaudin Hamiltonians

Opers and Miura opers in affine types

Suppose \mathfrak{g} is of untwisted affine type. Let ${}^{L}\mathfrak{g}$ be Langlands dual (affine, maybe twisted).

- ▶ Cartan decomposition: ${}^{L}\mathfrak{g} = {}^{L}\mathfrak{n}_{-} \oplus {}^{L}\mathfrak{h} \oplus {}^{L}\mathfrak{n}_{+}$
- Chevalley generators: \check{f}_i , \check{e}_i , $i = 0, 1, ..., \ell$; coroots $\alpha_i = [\check{e}_i, \check{f}_i]$

Definition: A <u>Miura ${}^{L}g$ -oper</u> is a connection of the form

$$\nabla = d + \left(\begin{array}{c} p_{-1} + u(z) \end{array} \right) dz.$$
Principal nilpotent element
$$p_{-1} := \sum_{i=0}^{\ell} \check{f}_i$$
rational function valued in Cartan ${}^L \mathfrak{h} \cong \mathfrak{h}^*$

▶ u(z) as before – except 'colours' of Bethe roots $c(j) \in \{0, 1, ..., \ell\}$ can include 0.

- Principal derivation element: $\rho \in {}^{L}\mathfrak{h}$. $[\rho, \check{e}_{i}] = \check{e}_{i}, [\rho, \check{f}_{i}] = -\check{f}_{i}$.
- Decompose u(z) in basis $\{\alpha_i\}_{i=0}^{\ell} \cup \{\rho\}$:

$$\nabla = d + \left(p_{-1} - \frac{\varphi(z)}{h^{\vee}} \rho + \sum_{i=0}^{\ell} u_i(z) \alpha_i \right) dz, \qquad \varphi(z) = \sum_{i=1}^N \frac{k_i}{z - z_i}$$

where $k_i=\langle {\bf k},\lambda_i\rangle$ are the levels of the $L_{\lambda_i}.$ Call $\varphi(z)$ the twist function.

Definition: An ${}^{L}\mathfrak{g}$ -oper is a gauge equivalence class $[\nabla]$ of connections of the form

$$\nabla = d + \left(\begin{array}{c} p_{-1} + b(z) \end{array} \right) dz$$

rational function valued in Borel ${}^L\mathfrak{b}_+\cong{}^L\mathfrak{h}\oplus{}^L\mathfrak{n}_+$

under the gauge action of the unipotent subgroup ${}^{L}N = \exp({}^{L}\mathfrak{n}_{+})$.

Theorem: [Lacroix, Vicedo, CY] (following [Drinfeld Sokolov]) (i) Each oper $[\nabla]$ has a unique representative of quasi-canonical form

 $d + \left(p_{-1} - \frac{\varphi(z)}{h^{\vee}}\rho + \sum_{r \in E} v_r(z) p_r\right) dz.$ countably infinite (multi)set of exponents of ${}^L\mathfrak{g}$ rational coefficient functions $element p_r \in {}^L\mathfrak{n}_+ \text{ of grade } r \text{ in principal gradation} (\in \text{ principal Heisenberg subalgebra})$ (ii) The functions $\varphi(z)$ and $v_1(z)$ are unique. But the functions $v_r(z)$, $r \ge 2$, are unique only up to transformations of the form

$$v_r(z) \longmapsto v_r(z) - g'_r(z) + \frac{r\varphi(z)}{h^{\vee}}g_r(z)$$

for any rational functions $g_r(z)$.

Corollary: These $v_r(z)$ are "good coordinates" on the space of affine opers. . . . so how to construct well-defined functions on the space of affine opers?

- ▶ Define multivalued function $\mathcal{P}(z) := \prod_{i=1}^{N} (z z_i)^{k_i}$ whose log-derivative is $\varphi(z)$.
- Gauge freedom in $v_r(z)$ is then

$$\mathcal{P}(z)^{-r/h^{\vee}}v_r(z)\longmapsto \mathcal{P}(z)^{-r/h^{\vee}}v_r(z) - \partial_z \big(\mathcal{P}(z)^{-r/h^{\vee}}g_r(z)\big).$$

▶ To get gauge-invariant quantities we should consider integrals of $\mathcal{P}(z)^{-r/h^{\vee}}v_r(z)...$

integrals over any cycle γ which is not only closed but also around which ${\mathcal P}$ is single-valued. . .

$$I_{\gamma}^{(r)} := \int_{\gamma} \mathcal{P}(z)^{-r/h^{ee}} v_r(z) dz$$

Prototypical example of such cycles are Pochhammer contours

Corollary: These integrals $I_{\gamma}^{(r)}$ are well-defined functions on the space of affine opers.

Proposition: The Bethe equations precisely ensure there exists a gauge in which $\{v_r(z)\}_{r\in E}$ have poles only at the marked points z_1, \ldots, z_N (and ∞) and not at the Bethe roots t_1, \ldots, t_m .

Aside: Coordinate-independent statements

For ${}^{L}\mathfrak{g}$ of finite type,

$$\operatorname{Op}_{L_{\mathfrak{g}}}(U) \simeq \operatorname{Proj}(U) \times \prod_{j \in E_{\geq 2}} \Gamma(U, \Omega^{j+1}),$$

[Frenkel]

Theorem [Lacroix,Vicedo,CY] For ${}^{L}\mathfrak{g}$ of affine type, $\operatorname{Op}_{L_{\mathfrak{g}}}(U)$ fibres over $\operatorname{Conn}(U,\Omega)$ and

$$\operatorname{Op}_{L_{\mathfrak{g}}}(U)^{\nabla} \simeq \Gamma(U, \Omega^2) \times \prod_{j \in E_{\geq 2}} H^1(U, \Omega^j, \nabla)$$

where $\operatorname{Op}_{L_{\mathfrak{q}}}(U)^{\nabla}$ is the fibre over a connection $\nabla \in \operatorname{Conn}(U,\Omega)$.

Charles Young

Conjectures

- 1. These integrals $I_{\gamma}^{(r)}$ are the eigenvalues of higher affine Gaudin Hamiltonians.
- 2. The Hamiltonians themselves are integrals,

$$H_{\gamma}^{(r)} := \int_{\gamma} \mathcal{P}(z)^{-r/h^{\vee}} S_r(z)_0 \, dz$$

for certain "densities" $S_r(z)_0 \in \hat{U}(\mathfrak{g}^{\oplus N})$ depending rationally on z.

In particular, each Hamiltonian is labelled by

- \blacktriangleright an exponent r from the infinite multiset E of exponents and
- \blacktriangleright a cycle γ of the twisted homology

Checks

- Semiclassics
- Cubic Hamiltonians
- GKO coset constructions (2-point Gaudin models for $\widehat{\mathfrak{sl}_2}$ and $\widehat{\mathfrak{sl}_3}$)

Semiclassics

Recall results on classical Principal Chiral Models (PCMs)

[Evans, Hassan, MacKay, Mountain]

- ▶ Let $j_+ = g^{-1}\partial_+g$ where $g = g(x,t) \in G$ is the PCM field.
- There are Poisson-commuting conserved charges of the form

$$\int_0^{2\pi} dx K_{ab\dots c} j^a_+ j^b_+ \dots j^c_+.$$

Here $K_{ab...c}$ are certain invariant tensors whose degrees \in { exponents of G repeating modulo the Coxeter number } = { the exponents of the affine algebra }

Classical PCMs can be interpreted as classical affine Gaudin models and then these conserved charges are of the form

[Vicedo], [Lacroix, Magro, Vicedo]

$$\int_0^{2\pi} dx K_{ab...c} L(z_{(0)})^a L(z_{(0)})^b \dots L(z_{(0)})^c.$$

where L(z) is the (Gaudin) Lax matrix and $z_{(0)}$ is a zero of the twist function $\varphi(z)$.

Semiclassics

On the other hand, one can re-introduce \hbar in the quantum-mechanical constructions above:

$$H_{\gamma}^{(r)} = \int_{\gamma} \mathcal{P}(z)^{-r/(\hbar h^{\vee})} S_r^{(\hbar)}(z)_0 dz$$

Then in the $\hbar \rightarrow 0$ limit, deform contour γ to apply method of steepest descents:

Integrals of the form $H_{\gamma}^{(r)}$ localize at the saddle points of $\mathcal{P}(z) = \text{zeros of } \varphi(z)!$

(And count of zeros (= N - 1) agrees with count of independent cycles.) (Reminiscent of passage from KZ equations to Gaudin model – yet conceptually quite separate)

Charles Young

Cubic Hamiltonians

- Simplest general direct check is in types $\widehat{\mathfrak{sl}}_M$ with $M \ge 3$.
- Check for r = 1, 2 only so far, i.e. quadratic and cubic Hamiltonians.
- ▶ (Guess that) densities S_r(z)₀ are actually Fourier zero modes of certain states in tensor product of Vacuum verma modules V^k₀ = ⊗^N_{i=1} V^{k_i}₀

$$S_1(z) := \frac{1}{2} I^a_{-1}(z) I^a_{-1}(z) |0\rangle^k,$$

$$S_2(z) := \frac{1}{3} t_{abc} I^a_{-1}(z) I^b_{-1}(z) I^c_{-1}(z) |0\rangle^k,$$

Theorem: [Lacroix,Vicedo,CY] For $i, j \in \{1, 2\}$,

$$S_i(z)_{(0)}S_j(w) = D_z^{(i)}A_{ij}(z,w) + D_w^{(j)}B_{ij}(z,w) + TC_{ij}(z,w)$$

for some \mathbb{V}_0^k -valued rational functions $A_{ij}(z, w)$, $B_{ij}(z, w)$ and $C_{ij}(z, w)$. <u>Proof</u> Direct (lengthy) calculation... e.g.

$$\begin{split} A_{22}(z,w) &= \left(\frac{2h^{\vee3}\left(1-\frac{h^{3}}{h^{3}2}\right)t_{-4}^{a}(z)t_{-1}^{a}(z) - \frac{4h^{\vee3}\left(1-\frac{h^{3}}{h^{2}}\right)}{(z-w)^{3}}t_{-4}^{a}(z)t_{-1}^{a}(w)} \\ &- \frac{2h^{\vee2}\left(1-\frac{h^{3}}{h^{3}2}\right)t_{-4}^{a}(z)t_{-1}^{a}(w) - \frac{h^{\vee3}\left(1-\frac{h^{3}}{h^{2}}\right)}{(z-w)^{2}}t_{-w}^{a}(z)t_{-1}^{a}(w)} \\ &- \frac{2h^{\vee3}\left(1-\frac{h^{3}}{h^{3}2}\right)t_{-3}^{a}(z)t_{-2}^{a}(z) + \frac{2h^{\vee2}\left(1-\frac{h^{3}}{h^{2}2}\right)}{(z-w)^{2}}f_{abc}t_{-3}^{a}(z)t_{-1}^{b}(z)t_{-1}^{c}(w) \\ &- \frac{2h^{\vee3}\left(1-\frac{h^{3}}{h^{2}2}\right)}{(z-w)^{3}}t_{-3}^{a}(z)t_{-2}^{a}(z) + \frac{2h^{\vee2}\left(1-\frac{h^{3}}{h^{2}2}\right)}{(z-w)^{2}}f_{abc}t_{-3}^{a}(z)t_{-1}^{b}(w) \\ &+ \frac{h^{\vee}}{z-w}t_{abc}t_{cdc}t_{-2}^{a}(z)t_{-1}^{b}(z)t_{-1}^{c}(w)t_{-1}^{d}(w)\right)|0|^{k} \\ &+ \frac{h^{\vee}}{z-w}t_{abc}t_{cdc}t_{-2}^{a}(z)t_{-1}^{b}(z)t_{-1}^{c}(w)t_{-1}^{d}(w)\right)|0|^{k} \\ &+ \frac{h^{\vee2}\left(1-\frac{h^{3}}{h^{2}2}\right)}{(z-w)^{3}}t_{-4}^{a}(z)t_{-1}^{a}(z) + \frac{8h^{\vee3}\left(1-\frac{h^{3}}{h^{2}2}\right)}{(z-w)^{3}}t_{-4}^{a}(z)t_{-1}^{a}(w) \\ &+ \frac{4h^{\vee2}\left(1-\frac{h^{3}}{h^{2}2}\right)}{(z-w)^{3}}t_{-4}^{a}(z)t_{-1}^{a}(w) + \frac{2h^{\vee3}\left(1-\frac{h^{3}}{h^{2}2}\right)}{(z-w)^{3}}t_{-4}^{a}(z)t_{-1}^{a}(w) \\ &+ \frac{4h^{\vee3}\left(1-\frac{h^{3}}{h^{2}2}\right)}{(z-w)^{3}}t_{-4}^{a}(z)t_{-1}^{a}(w) + \frac{2h^{\vee3}\left(1-\frac{h^{3}}{h^{2}2}\right)}{(z-w)^{3}}t_{-4}^{a}(z)t_{-1}^{a}(w) \\ &+ \frac{h^{\vee3}\left(1-\frac{h^{3}}{h^{2}2}\right)}{(z-w)^{3}}t_{-4}^{a}(z)t_{-1}^{a}(w) + \frac{2h^{\vee3}\left(1-\frac{h^{3}}{h^{2}2}\right)}{(z-w)^{3}}t_{-4}^{a}(z)t_{-1}^{a}(w) \\ &+ \frac{h^{\vee3}\left(1-\frac{h^{3}}{h^{2}2}\right)}{(z-w)^{3}}t_{-4}^{a}(z)t_{-1}^{a}(w) + \frac{2h^{\vee3}\left(1-\frac{h^{3}}{h^{2}2}\right)}{(z-w)^{3}}t_{-4}^{a}(z)t_{-1}^{a}(w) \\ &+ \frac{h^{\vee3}\left(1-\frac{h^{3}}{h^{2}2}\right)}{(z-w)^{3}}t_{-4}^{a}(z)t_{-1}^{a}(w) + \frac{2h^{\vee3}\left(1-\frac{h^{3}}{h^{2}2}\right)}{(z-w)^{3}}t_{-3}^{a}(z)t_{-1}^{a}(w) \\ &+ \frac{h^{\vee3}\left(1-\frac{h^{3}}{h^{2}2}\right)}{(z-w)^{3}}t_{-4}^{a}(z)t_{-1}^{a}(w) + \frac{2h^{\vee3}\left(1-\frac{h^{3}}{h^{2}2}\right)}{(z-w)^{3}}t_{-3}^{a}(z)t_{-1}^{a}(w) \\ &+ \frac{h^{\vee3}\left(1-\frac{h^{3}}{h^{3}2}\right)}{(z-w)^{3}}t_{-3}^{a}(z)t_{-1}^{a}(w) \\ &+ \frac{h^{\vee3}\left(1-\frac{h^{3}}{h^{3}2}\right)}{(z-w)^{3}}t_{-4}^{a}(z)t_{-1}^{a}(w) \\ &+ \frac{h^{\vee3}\left(1-\frac{h^{3}}{h^{3}2}\right)}{(z-w)^{3}}t_{-3}^{a}(z)t_{-1}^{a}(w) \\ &+ \frac{h^{\vee3}\left(1-\frac$$

Corollary: The corresponding Hamiltonians, i.e. contour integrals of zero modes, commute.

Charles Young

GKO coset construction and qKdV integrals of motion

Consider Gaudin model for $\widehat{\mathfrak{sl}}_2$ with 2 marked points. Quadratic Hamiltonian:

$$\mathcal{H} := \mathcal{H}_1 = -\mathcal{H}_2 = rac{\Xi}{z_1 - z_2} \quad ext{where} \quad \Xi = d \otimes k + k \otimes d + \sum_n I_n^a \otimes I_{a, -n}$$

On the other hand, have Segal-Sugawara generators of Virasoro algebra at sites 1 and 2, and the diagonal copy:

$$\begin{split} T^{(1)}(x) &:= \frac{1}{2(k_1 + h^{\vee})} \sum_{n \in \mathbb{Z}} : I_n^{a(1)} I_{a,-n}^{(1)} : \qquad T^{(2)}(x) := \frac{1}{2(k_2 + h^{\vee})} \sum_{n \in \mathbb{Z}} : I_n^{a(2)} I_{a,-n}^{(2)} : \\ T^{(diag)}(x) &:= \frac{1}{2(k_1 + k_2 + h^{\vee})} \sum_{n \in \mathbb{Z}} : (I_n^{a(1)} + I_n^{a(2)}) (I_{a,-n}^{(1)} + I_{a,-n}^{(2)}) : \end{split}$$

And then the Goddard-Kent-Olive coset generators of Virasoro are:

$$T^{(GKO)}(x) := T^{(1)}(x) + T^{(2)}(x) - T^{(diag)}(x) =: \sum_{n \in \mathbb{Z}} L_n x^{-n-2}$$

Fact: The quadratic Gaudin Hamiltonian is the GKO Virasoro zero mode:

$$\Xi = -(k_1 + k_2 + h^{\vee})L_0$$

Charles Young

But the Virasoro algebra is known to have a large commutative subalgebra, called the algebra of **Quantum Integrals of Motion** (of quantum (m)KdV). [Sasaki, Yamanaka],[Feigin, Frenkel]

$$I_1 = L_0$$

$$I_3 = 2\sum_{n=1}^{\infty} L_{-n}L_n + L_0^2 - \frac{c+2}{12}L_0 + \frac{c(5c+22)}{2880}$$

$$I_5 = \dots$$

Since the first of these is the quadratic Gaudin Hamiltonian, have natural:

Conjecture/Definition: [Feigin, Frenkel] In this case (2 sites, $\hat{\mathfrak{sl}}_2$) the higher Quantum Integrals of Motion are the higher affine Gaudin Hamiltonians.

Taking this as a definition, have an arena to test conjecture about eigenvalues...

$$\begin{array}{c|c} \mathbb{C} \\ \uparrow z_1 = 0 \\ L_{a\Lambda_0 + b\Lambda_1} \otimes L_{\Lambda_0} = L_{(a+1)\Lambda_0 + b\Lambda_1} \otimes \mathcal{U} \oplus \end{array} \end{array} \begin{array}{c} \text{Top multiplicity space} = \text{Virasoro module with} \\ c(a,b) = 1 - \frac{6}{(a+b+2)(a+b+3)} \\ \Delta(a,b) = \frac{b(b+2)}{4(a+b+2)(a+b+3)} \\ \hline \end{array}$$

• Virasoro calculation: Vacuum value of, e.g. I_5 is

$$I_{5} = \Delta^{3} - \frac{c+4}{8}\Delta^{2} + \frac{(c+2)(3c+20)}{576}\Delta + \frac{(-c)(3c+14)(7c+68)}{290304}$$

► Affine oper calculation: $u(z) := \frac{\frac{1}{4}(b-a)}{z} - \frac{\frac{1}{4}}{z-1}$, $\varphi(z) := \frac{a+b}{z} + \frac{1}{z-1}$ and

$$I_{\gamma}^{(5)} = \int_{\gamma} \mathcal{P}(z)^{-5/2} v_5(z) dz$$

$$\begin{array}{l} \text{where } v_{5}(z) \text{ is given by} \\ \\ \frac{u(z)^{2} \left(\frac{d^{3}}{dz^{3}}\varphi(z)\right)}{16} + \frac{5u(z) \left(\frac{d}{dz}u(z)\right) \left(\frac{d^{2}}{dz^{2}}\varphi(z)\right)}{16} + \frac{-11u(z)^{2}\varphi(z) \left(\frac{d^{2}}{dz^{2}}\varphi(z)\right)}{16} + \frac{-7u(z)^{2} \left(\frac{d}{dz}\varphi(z)\right)^{2}}{16} + \frac{5u(z) \left(\frac{d^{2}}{dz^{2}}u(z)\right) \left(\frac{d}{dz}\varphi(z)\right)}{8} + \frac{-45u(z) \left(\frac{d}{dz}\varphi(z)\right)}{16} + \frac{23u(z)^{2}\varphi(z)^{2} \left(\frac{d}{dz}\varphi(z)\right)}{8} + \frac{-7u(z)^{4} \left(\frac{d}{dz}\varphi(z)\right)}{16} + \frac{-u(z) \left(\frac{d^{4}}{dz^{4}}u(z)\right)}{16} + \frac{5u(z) \left(\frac{d^{2}}{dz^{2}}u(z)\right)}{8} + \frac{-35u(z) \varphi(z)^{2} \left(\frac{d}{dz}\varphi(z)\right)}{16} + \frac{-45u(z)^{2} \left(\frac{d^{4}}{dz^{4}}u(z)\right)}{16} + \frac{11u(z)^{2} \left(\frac{d}{dz}u(z)\right)^{2}}{8} + \frac{25u(z) \varphi(z)^{2} \left(\frac{d}{dz}u(z)\right)}{8} + \frac{-43u(z)^{3} \varphi(z) \left(\frac{d}{dz}u(z)\right)}{16} + \frac{-3u(z)^{2} \varphi(z)^{4}}{2} + \frac{25u(z)^{4} \varphi(z)^{2}}{16} + \frac{-u(z)^{2}}{8} + \frac{-43u(z)^{3} \varphi(z)}{16} + \frac{11u(z)^{2} \varphi(z)^{4}}{16} + \frac{25u(z)^{4} \varphi(z)^{2}}{8} + \frac{-43u(z)^{3} \varphi(z)}{8} + \frac{-43u(z)^{3} \varphi(z) \left(\frac{d}{dz}u(z)\right)}{16} + \frac{-3u(z)^{2} \varphi(z)^{4}}{16} + \frac{25u(z)^{4} \varphi(z)^{2}}{16} + \frac{-u(z)^{2}}{16} + \frac{11u(z)^{2} \varphi(z)}{16} + \frac{11u(z)^{2} \varphi(z)$$

Charles Young

Hypergeometric Integrals of Motion and Affine Gaudin Models

RTIS August 2019

- Similar checks works with (up to 2) Bethe roots instead of vacuum.
- Also have Cubic Affine Gaudin Hamiltonian, so can also try sl3 case:

$\widehat{\mathfrak{sl}}_3$ -Coset construction of W_3 algebra

• On specializing to case of 2 points and $\widehat{\mathfrak{sl}}_M$, find $T = \int_{\gamma} \mathcal{P}(z)^{-1/3} S_1(z) dz$ and

$$\begin{split} W &= \int_{\gamma} \mathcal{P}(z)^{-2/3} S_2(z) dz \\ &\propto \frac{1}{3} t_{abc} I_{-1}^{a(1)} I_{-1}^{b(1)} I_{-1}^{c(1)} |0\rangle^k \left(-\frac{2}{M} k_2\right) \left(-\frac{2}{M} k_2 - 1\right) \left(-\frac{2}{M} k_2 - 2\right) \\ &+ t_{abc} I_{-1}^{a(1)} I_{-1}^{b(1)} I_{-1}^{c(2)} |0\rangle^k \left(-\frac{2}{M} k_1 - 2\right) \left(-\frac{2}{M} k_2 - 1\right) \left(-\frac{2}{M} k_2 - 2\right) \\ &+ t_{abc} I_{-1}^{a(1)} I_{-1}^{b(2)} I_{-1}^{c(2)} |0\rangle^k \left(-\frac{2}{M} k_1 - 1\right) \left(-\frac{2}{M} k_1 - 2\right) \left(-\frac{2}{M} k_2 - 2\right) \\ &+ \frac{1}{3} t_{abc} I_{-1}^{a(2)} I_{-1}^{b(2)} I_{-1}^{c(2)} |0\rangle^k \left(-\frac{2}{M} k_1 - 1\right) \left(-\frac{2}{M} k_1 - 2\right) \left(-\frac{2}{M} k_1 - 2\right) \end{split}$$

are the coset conformal and W vectors.

- Quantum Integrals of Motion $I_1, I_2, I_4, I_5, I_7, I_8, \ldots$ are known.
- Check at least vacuum values of I2, I4, I5.

Charles Young

Open questions

- Existence proof (or explicit formula) for the higher Hamiltonians?
- Relation to ODE/IM. [Bazhanov, Lukyanov, Zamolodchikov] [Dorey, Dunning, Tateo] [Masoero, Raimondo, Valeri] ? ("dual"?)
- Relation to Integrals of Motion in quantum toroidal algebras? [Feigin, Jimbo, Miwa, Mukhin]