Duality for Bethe algebras acting on polynomials in anticommuting variables

Filipp Uvarov, joint work with V. Tarasov.
IUPUI, USA

Representation Theory and Integrable Systems, Zürich, Switzerland, August 15, 2019

Space $\mathfrak{P}_{k n}$

$\mathfrak{P}_{k n}$ - space of polynomials in $\xi_{a i}, a=1, \ldots, k, i=1, \ldots, n$.
$\xi_{a i} \xi_{b j}=-\xi_{b j} \xi_{a i},(a, i) \neq(b, j), \xi_{a i}^{2}=0$ for any a, i.
The left derivations $\partial_{a i}, a=1, \ldots, k, i=1, \ldots, n$:
For monomial $g \in \mathfrak{P}_{k n}$ such that $\xi_{a i} g \neq 0$, we have:
$\partial_{a i} g=0, \partial_{a i}\left(\xi_{a i} g\right)=g$.
Fix $\bar{\alpha}=\left(\alpha_{1}, \ldots, \alpha_{n}\right), \alpha_{i} \neq \alpha_{j}, i \neq j$. Define $\mathfrak{g l}_{k}[t]$-action on $\mathfrak{P}_{k n}$:

$$
\pi_{\bar{\alpha}}^{\langle\langle \rangle}: \quad e_{a b}^{\langle k\rangle} \otimes t^{s} \mapsto \sum_{i=1}^{n} \alpha_{i}^{s} \xi_{a i} \partial_{b i} .
$$

Fix $\bar{z}=\left(z_{1}, \ldots, z_{k}\right), z_{a} \neq z_{b}, a \neq b$. Define $\mathfrak{g l}_{n}[t]$-action on $\mathfrak{P}_{k n}$:

$$
\pi_{\bar{z}}^{\langle n\rangle}: \quad e_{i j}^{\langle n\rangle} \otimes t^{s} \mapsto \sum_{a=1}^{k} z_{a}^{s} \xi_{a i} \partial_{a j}
$$

Bethe algebras

Let $e_{a b}^{\langle k\rangle}(x)=\sum_{s=0}^{\infty}\left(e_{a b}^{\langle k\rangle} \otimes t^{s}\right) x^{-s-1}$. Consider

$$
\begin{aligned}
& \operatorname{cdet}\left(\delta_{a b}\left(\frac{d}{d x}-z_{a}\right)-e_{a b}^{\langle k\rangle}(x)\right)_{a, b=1}^{k}= \\
& =\left(\frac{d}{d x}\right)^{k}+\sum_{a=1}^{k}\left(\sum_{b=0}^{\infty} B_{a b}^{\langle k\rangle} x^{-b}\right)\left(\frac{d}{d x}\right)^{k-a} .
\end{aligned}
$$

The Bethe algebra $\mathcal{B}_{\bar{z}}^{\langle k\rangle} \subset U\left(\mathfrak{g l}_{k}[t]\right)$ is the subalgebra generated by $B_{a b}^{\langle k\rangle}$, $a=1, \ldots, k, b \geq 0$.
Similarly, define $\mathcal{B}_{\bar{\alpha}}^{\langle n\rangle} \subset U\left(\mathfrak{g l}_{n}[t]\right)$. Denote the corresponding generators $B_{i j}^{\langle n\rangle}, i=1, \ldots, n, j \geq 0$.

Theorem ([Huang, Mukhin], [Tarasov, U.])

$$
\pi_{\bar{z}}^{\langle n\rangle}\left(\mathcal{B}_{\bar{\alpha}}^{\langle n\rangle}\right)=\pi_{-\bar{\alpha}}^{\langle k\rangle}\left(\mathcal{B}_{\bar{z}}^{\langle k\rangle}\right) .
$$

Spaces of quasi-exponentials

$\operatorname{Fix} \bar{\alpha}=\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \mathbb{C}^{n}, \alpha_{i} \neq \alpha_{j}, i \neq j, \bar{\mu}=\left(\mu^{(1)}, \ldots, \mu^{(n)}\right)$,
$\mu^{(i)}=\left(\mu_{1}^{(i)}, \mu_{2}^{(i)}, \ldots, \mu_{n_{i}}^{(i)}, 0,0, \ldots, 0, \ldots\right), \mu_{1}^{(i)} \geq \mu_{2}^{(i)} \geq \cdots \geq \mu_{n_{i}}^{(i)}>0$.
Assume $n_{i}>0$.
Let V be a space of functions with a basis of the form

$$
\left\{e^{\alpha_{i} x} p_{i j}(x) \mid i=1, \ldots, n, j=1, \ldots, n_{i}\right\}
$$

where $p_{i j}(x)$ are polynomials and $\operatorname{deg} p_{i j}=n_{i}+\mu_{j}^{(i)}-j$.
Let $\mathbf{e}(z)=\left(e_{1}(z)>e_{2}(z)>\cdots>e_{n}(z)\right)$ be exponents of V at a point $z \in \mathbb{C}$, that is for each $i=1, \ldots, n$, there is $f(x) \in V$ such that $f(x)=(x-z)^{e_{i}(z)}(1+o(1))$.
Define a partition $\lambda(z)$ by the rule: $e_{i}(z)=\operatorname{dim} V+\lambda_{i}(z)-i$.

Spaces of quasi-exponentials

A point $z \in \mathbb{C}$ is called singular if $\lambda(z) \neq(0,0,0, \ldots)$.
Let $\left\{z_{1}, \ldots, z_{k}\right\}$ be the set of all singular points of V.
Denote $\lambda\left(z_{a}\right)=\lambda^{(a)}, \bar{z}=\left(z_{1}, \ldots, z_{k}\right), \bar{\lambda}=\left(\lambda^{(1)}, \ldots, \lambda^{(k)}\right)$.
We say that V is a space of quasi-exponentials with the data $(\bar{\mu}, \bar{\lambda} ; \bar{\alpha}, \bar{z})$.

The fundamental differential operator D_{V} of V is the unique monic differential operator of order $\operatorname{dim} V$ such that $D_{V} f=0$ for any $f \in V$.

Transformation $D_{V} \rightarrow \tilde{D}_{V}$

- Define the transformation $D \rightarrow D^{\dagger}$ of differential operators by:
$(\cdot)^{\dagger}$ is an antiautomorphism,
$\left(\frac{d}{d x}\right)^{\dagger}=-\frac{d}{d x}$,
$(b(x))^{\dagger}=b(x)$.
D^{\dagger} is called the formal conjugate of D.
- Define the transformation $D \rightarrow D^{\ddagger}$ of differential operators with polynomial coefficients by:
$(\cdot)^{\ddagger}$ is an antiautomorphism, $\left(\frac{d}{d x}\right)^{\ddagger}=x$, $x^{\ddagger}=\frac{d}{d x}$.
D^{\ddagger} is called the bispectral dual of D.

Transformation $D_{V} \rightarrow \tilde{D}_{V}$

There exists differential operator \check{D}_{V} such that

$$
\prod_{i=1}^{n}\left(\frac{d}{d x}-\alpha_{i}\right)^{n_{i}+\mu_{1}^{(i)}}=\check{D}_{V} D_{V}
$$

Consider a chain of transformations:

$$
D_{V} \rightarrow \check{D}_{V} \rightarrow \check{D}_{V}^{\dagger} \rightarrow\left(p \check{D}_{V}^{\dagger}\right)^{\ddagger}
$$

where p is the polynomal of minimal degree such that $p \check{D}_{V}^{\dagger}$ is a differential operator with polynomial coefficients.

Theorem ([Tarasov, U.])

The space $\tilde{V}=\operatorname{ker}\left(\left(p \check{D}_{V}^{\dagger}\right)^{\ddagger}\right)$ is a space of quasi-exponentials with the data $\left(\bar{\lambda}^{\prime}, \bar{\mu}^{\prime} ; \bar{z},-\bar{\alpha}\right)$.

Let \tilde{D}_{V} be the fundamental differential operator of \tilde{V}.

Weight subspaces $\mathfrak{P}_{k n}[\lambda, \mu]$

$\operatorname{Fix} \lambda=\left(l_{1}, \ldots, l_{k}\right), l_{a} \in \mathbb{Z}_{>0}, a=1, \ldots, k$, $\mu=\left(m_{1}, \ldots, m_{n}\right), m_{i} \in \mathbb{Z}_{>0}, i=1, \ldots, n$.
Consider a subspace $\mathfrak{P}_{k n}[\lambda, \mu] \subset \mathfrak{P}_{k n}$,

$$
\mathfrak{P}_{k n}[\lambda, \mu]=\left\{p \in \mathfrak{P}_{k n} \mid e_{a a}^{\langle k\rangle} p=l_{a} p, e_{i i}^{\langle n\rangle} p=m_{i} p\right\} .
$$

Both $\mathcal{B}_{\bar{z}}^{\langle k\rangle}$ and $\mathcal{B}_{\bar{\alpha}}^{\langle n\rangle}$ preserve the subspace $\mathfrak{P}_{k n}[\lambda, \mu]$.

Eigenvectors for Bethe algebras

Define $\bar{\mu}=\left(\mu^{(1)}, \ldots, \mu^{(n)}\right)$ and $\bar{\lambda}=\left(\lambda^{(1)}, \ldots, \lambda^{(k)}\right)$ by:
$\mu^{(i)}=\left(m_{i}, 0,0, \ldots\right), \lambda^{(a)}=(\underbrace{1, \ldots, 1}_{l_{a}}, 0,0, \ldots)$.

Theorem ([Mukhin, Tarasov, Varchenko])

- There is a bijective correspondence:

$$
\left\{\begin{array}{l}
\text { eigenvectors of } \\
\pi_{\bar{z}}^{\langle n\rangle}\left(\mathcal{B}_{\bar{\alpha}}^{\langle n\rangle}\right) \text { in } \mathfrak{P}_{k n}[\lambda, \mu]
\end{array}\right\} \longleftrightarrow\left\{\begin{array}{l}
\text { spaces of quasi-exponentials } \\
\text { with the data }(\bar{\mu}, \bar{\lambda} ; \bar{\alpha}, \bar{z})
\end{array}\right\}
$$

- Similarly, there is a bijective correspondence:

$$
\left\{\begin{array}{l}
\text { eigenvectors of } \\
\pi_{-\bar{\alpha}}^{\langle k\rangle}\left(\mathcal{B}_{\bar{z}}^{\langle k\rangle}\right) \text { in } \mathfrak{P}_{k n}[\lambda, \mu]
\end{array}\right\} \longleftrightarrow\left\{\begin{array}{l}
\text { spaces of quasi-exponentials } \\
\text { with the data }\left(\bar{\lambda}^{\prime}, \bar{\mu}^{\prime} ; \bar{z},-\bar{\alpha}\right)
\end{array}\right\}
$$

Duality and spaces of quasi-exponentials

Let $v \in \mathfrak{P}_{k n}[\lambda, \mu]$ be an eigenvector of $\pi_{\bar{z}}^{\langle n\rangle}\left(\mathcal{B}_{\bar{\alpha}}^{\langle n\rangle}\right)$, and let V be the corresponding space of quasi-exponentials.

Notice that \tilde{V} corresponds to an eigenvector of $\pi_{-\bar{\alpha}}^{\langle k\rangle}\left(\mathcal{B}_{\bar{z}}^{\langle k\rangle}\right)$ in $\mathfrak{P}_{k n}[\lambda, \mu]$.

Theorem ([Tarasov, U.])

The vector v is the eigenvetor of $\pi_{-\bar{\alpha}}^{\langle k\rangle}\left(\mathcal{B}_{\bar{z}}^{\langle k\rangle}\right)$ corresponding to \tilde{V}.

Eigenvalues of Bethe algebras

Let $b_{i}(x)$ be the coefficients of D_{V} :

$$
D_{V}=\left(\frac{d}{d x}\right)^{n}+\sum_{i=1}^{n} b_{i}(x)\left(\frac{d}{d x}\right)^{n-i}
$$

Let $\sum_{j=0}^{\infty} b_{i j} x^{-j}$ be the Laurent series of $b_{i}(x)$ at infinity.
Recall that the Bethe algebra $\mathcal{B}_{\bar{\alpha}}^{\langle n\rangle}$ is generated by $B_{i j}^{\langle n\rangle}, i=1, \ldots, n$, $j \geq 0$.

Theorem ([Mukhin, Tarasov, Varchenko])

The eigenvalue of $B_{i j}^{\langle n\rangle}$ associated to eigenvector v is $b_{i j}$.

- We can express coefficients of \tilde{D}_{V} in terms of coefficients of D_{V} \longrightarrow we know how the eigenvalues of two Bethe algebras are linked.
- These expressions lift to expressions for generators, which gives the duality.

Thank You!

