Duality for Bethe algebras acting on polynomials in anticommuting variables

Filipp Uvarov, joint work with V. Tarasov.

IUPUI, USA

Representation Theory and Integrable Systems, Zürich, Switzerland, August 15, 2019

Space \mathfrak{P}_{kn}

 \mathfrak{P}_{kn} – space of polynomials in ξ_{ai} , $a=1,\ldots,k$, $i=1,\ldots,n$. $\xi_{ai}\xi_{bj}=-\xi_{bj}\xi_{ai}$, $(a,i)\neq(b,j)$, $\xi_{ai}^2=0$ for any a,i.

The left derivations ∂_{ai} , $a=1,\ldots,k$, $i=1,\ldots,n$: For monomial $g\in\mathfrak{P}_{kn}$ such that $\xi_{ai}g\neq 0$, we have: $\partial_{ai}g=0$, $\partial_{ai}(\xi_{ai}g)=g$.

Fix $\bar{\alpha} = (\alpha_1, \dots, \alpha_n)$, $\alpha_i \neq \alpha_j$, $i \neq j$. Define $\mathfrak{gl}_k[t]$ -action on \mathfrak{P}_{kn} :

$$\pi_{\bar{\alpha}}^{\langle k \rangle} : \quad e_{ab}^{\langle k \rangle} \otimes t^s \mapsto \sum_{i=1}^n \alpha_i^s \xi_{ai} \partial_{bi}.$$

Fix $\bar{z} = (z_1, \dots, z_k)$, $z_a \neq z_b$, $a \neq b$. Define $\mathfrak{gl}_n[t]$ -action on \mathfrak{P}_{kn} :

$$\pi_{\bar{z}}^{\langle n \rangle}: \quad e_{ij}^{\langle n \rangle} \otimes t^s \mapsto \sum_{a=1}^k z_a^s \xi_{ai} \partial_{aj}.$$

Bethe algebras

Let
$$e_{ab}^{\langle k \rangle}(x) = \sum_{s=0}^{\infty} (e_{ab}^{\langle k \rangle} \otimes t^s) x^{-s-1}$$
. Consider

$$\operatorname{cdet}\left(\delta_{ab}\left(\frac{d}{dx}-z_{a}\right)-e_{ab}^{\langle k\rangle}(x)\right)_{a,b=1}^{k}=\\=\left(\frac{d}{dx}\right)^{k}+\sum_{a=1}^{k}\left(\sum_{b=0}^{\infty}B_{ab}^{\langle k\rangle}x^{-b}\right)\left(\frac{d}{dx}\right)^{k-a}.$$

The Bethe algebra $\mathcal{B}_{\bar{z}}^{\langle k \rangle} \subset U(\mathfrak{gl}_k[t])$ is the subalgebra generated by $B_{ab}^{\langle k \rangle}$, $a=1,\ldots,k,\ b\geq 0$.

Similarly, define $\mathcal{B}_{\bar{\alpha}}^{\langle n \rangle} \subset U(\mathfrak{gl}_n[t])$. Denote the corresponding generators $\mathcal{B}_{ij}^{\langle n \rangle}$, $i=1,\ldots,n, j\geq 0$.

Theorem ([Huang, Mukhin], [Tarasov, U.])

$$\pi_{\bar{z}}^{\langle n \rangle}(\mathcal{B}_{\bar{\alpha}}^{\langle n \rangle}) = \pi_{-\bar{\alpha}}^{\langle k \rangle}(\mathcal{B}_{\bar{z}}^{\langle k \rangle}).$$

Spaces of quasi-exponentials

Fix
$$\bar{\alpha} = (\alpha_1, \dots, \alpha_n) \in \mathbb{C}^n$$
, $\alpha_i \neq \alpha_j$, $i \neq j$, $\bar{\mu} = (\mu^{(1)}, \dots, \mu^{(n)})$, $\mu^{(i)} = (\mu_1^{(i)}, \mu_2^{(i)}, \dots, \mu_{n_i}^{(i)}, 0, 0, \dots, 0, \dots)$, $\mu_1^{(i)} \geq \mu_2^{(i)} \geq \dots \geq \mu_{n_i}^{(i)} > 0$. Assume $n_i > 0$.

Let V be a space of functions with a basis of the form

$$\{e^{\alpha_i x} p_{ij}(x) | i = 1, \dots, n, j = 1, \dots, n_i\},$$

where $p_{ij}(x)$ are polynomials and deg $p_{ij} = n_i + \mu_j^{(i)} - j$.

Let $\mathbf{e}(z) = (e_1(z) > e_2(z) > \cdots > e_n(z))$ be exponents of V at a point $z \in \mathbb{C}$, that is for each $i = 1, \ldots, n$, there is $f(x) \in V$ such that $f(x) = (x - z)^{e_i(z)} (1 + o(1))$.

Define a partition $\lambda(z)$ by the rule: $e_i(z) = \dim V + \lambda_i(z) - i$.

Spaces of quasi-exponentials

A point $z \in \mathbb{C}$ is called singular if $\lambda(z) \neq (0,0,0,\dots)$. Let $\{z_1,\dots,z_k\}$ be the set of all singular points of V. Denote $\lambda(z_a) = \lambda^{(a)}$, $\bar{z} = (z_1,\dots,z_k)$, $\bar{\lambda} = (\lambda^{(1)},\dots,\lambda^{(k)})$.

We say that V is a space of quasi-exponentials with the data $(\bar{\mu}, \bar{\lambda}; \bar{\alpha}, \bar{z})$.

The fundamental differential operator D_V of V is the unique monic differential operator of order dim V such that $D_V f = 0$ for any $f \in V$.

Transformation $D_V o ilde{D}_V$

• Define the transformation $D o D^{\dagger}$ of differential operators by:

$$(\cdot)^{\dagger}$$
 is an antiautomorphism, $\left(\frac{d}{dx}\right)^{\dagger} = -\frac{d}{dx}$, $(b(x))^{\dagger} = b(x)$.

 D^{\dagger} is called the **formal conjugate** of D.

• Define the transformation $D \to D^\ddagger$ of differential operators with polynomial coefficients by:

$$(\cdot)^{\ddagger}$$
 is an antiautomorphism, $\left(\frac{d}{dx}\right)^{\ddagger} = x$, $x^{\ddagger} = \frac{d}{dx}$.

 D^{\ddagger} is called the **bispectral dual** of D.

Transformation $D_V o \tilde{D}_V$

There exists differential operator \check{D}_V such that

$$\prod_{i=1}^{n} \left(\frac{d}{dx} - \alpha_i \right)^{n_i + \mu_1^{(i)}} = \check{D}_V D_V.$$

Consider a chain of transformations:

$$D_V
ightarrow \check{D}_V
ightarrow \check{D}_V^\dagger
ightarrow (
ho \check{D}_V^\dagger)^\ddagger,$$

where p is the polynomal of minimal degree such that $p\check{D}_V^\dagger$ is a differential operator with polynomial coefficients.

Theorem ([Tarasov, U.])

The space $\tilde{V}=\ker((p\check{D}_V^\dagger)^\dagger)$ is a space of quasi-exponentials with the data $(\bar{\lambda}',\bar{\mu}';\bar{z},-\bar{\alpha})$.

Let \tilde{D}_V be the fundamental differential operator of \tilde{V} .

Weight subspaces $\mathfrak{P}_{kn}[\lambda,\mu]$

Fix
$$\lambda=(l_1,\ldots,l_k),\ l_a\in\mathbb{Z}_{>0},\ a=1,\ldots,k,$$
 $\mu=(m_1,\ldots,m_n),\ m_i\in\mathbb{Z}_{>0},\ i=1,\ldots,n.$ Consider a subspace $\mathfrak{P}_{kn}[\lambda,\mu]\subset\mathfrak{P}_{kn},$

$$\mathfrak{P}_{kn}[\lambda,\mu] = \{ p \in \mathfrak{P}_{kn} | \ e_{\mathsf{a}\mathsf{a}}^{\langle k \rangle} p = I_{\mathsf{a}}p, \ e_{ii}^{\langle n \rangle} p = m_i p \}.$$

Both $\mathcal{B}_{\bar{z}}^{\langle k \rangle}$ and $\mathcal{B}_{\bar{\alpha}}^{\langle n \rangle}$ preserve the subspace $\mathfrak{P}_{kn}[\lambda, \mu]$.

Eigenvectors for Bethe algebras

Define
$$\bar{\mu} = (\mu^{(1)}, \dots, \mu^{(n)})$$
 and $\bar{\lambda} = (\lambda^{(1)}, \dots, \lambda^{(k)})$ by: $\mu^{(i)} = (m_i, 0, 0, \dots), \ \lambda^{(a)} = (\underbrace{1, \dots, 1}_{l_a}, 0, 0, \dots).$

Theorem ([Mukhin, Tarasov, Varchenko])

• There is a bijective correspondence:

$$\left\{ \begin{array}{l} \text{eigenvectors of} \\ \pi_{\bar{z}}^{\langle n \rangle}(\mathcal{B}_{\bar{\alpha}}^{\langle n \rangle}) \text{ in } \mathfrak{P}_{kn}[\lambda, \mu] \right\} & \longleftrightarrow & \left\{ \begin{array}{l} \text{spaces of quasi-exponentials} \\ \text{with the data } (\bar{\mu}, \bar{\lambda}; \bar{\alpha}, \bar{z}) \end{array} \right\}$$

• Similarly, there is a bijective correspondence:

$$\begin{cases} \text{eigenvectors of} \\ \pi_{-\bar{\alpha}}^{\langle k \rangle}(\mathcal{B}_{\bar{\mathbf{z}}}^{\langle k \rangle}) \text{ in } \mathfrak{P}_{kn}[\lambda, \mu] \end{cases} \longleftrightarrow \begin{cases} \text{spaces of quasi-exponentials} \\ \text{with the data } (\bar{\lambda}', \bar{\mu}'; \bar{\mathbf{z}}, -\bar{\alpha}) \end{cases}$$

Duality and spaces of quasi-exponentials

Let $v \in \mathfrak{P}_{kn}[\lambda, \mu]$ be an eigenvector of $\pi_{\bar{z}}^{\langle n \rangle}(\mathcal{B}_{\bar{\alpha}}^{\langle n \rangle})$, and let V be the corresponding space of quasi-exponentials.

Notice that \tilde{V} corresponds to an eigenvector of $\pi_{-\bar{\alpha}}^{\langle k \rangle}(\mathcal{B}_{\bar{z}}^{\langle k \rangle})$ in $\mathfrak{P}_{kn}[\lambda, \mu]$.

Theorem ([Tarasov, U.])

The vector v is the eigenvetor of $\pi_{-\bar{\alpha}}^{\langle k \rangle}(\mathcal{B}_{\bar{z}}^{\langle k \rangle})$ corresponding to \tilde{V} .

Eigenvalues of Bethe algebras

Let $b_i(x)$ be the coefficients of D_V :

$$D_V = \left(\frac{d}{dx}\right)^n + \sum_{i=1}^n b_i(x) \left(\frac{d}{dx}\right)^{n-i}.$$

Let $\sum_{j=0}^{\infty} b_{ij} x^{-j}$ be the Laurent series of $b_i(x)$ at infinity.

Recall that the Bethe algebra $\mathcal{B}_{\bar{\alpha}}^{\langle n \rangle}$ is generated by $\mathcal{B}_{ij}^{\langle n \rangle}$, $i=1,\ldots,n$, $j\geq 0$.

Theorem ([Mukhin, Tarasov, Varchenko])

The eigenvalue of $B_{ii}^{\langle n \rangle}$ associated to eigenvector v is b_{ij} .

- We can express coefficients of \tilde{D}_V in terms of coefficients of D_V \longrightarrow we know how the eigenvalues of two Bethe algebras are linked.
- These expressions lift to expressions for generators, which gives the duality.

Thank You!