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Pin — space of polynomials in &, a=1,...,k, i=1...,n.
Eailpy = —Epi&air (a,1) # (b, J), €% =0 for any a, i.

The left derivations 9,5, a=1,....k, i=1,... n
For monomial g € Py, such that £,;g # 0, we have:
aaig =0, aai(gaig) =8.

Fix @ = (a1,...,an), i # «j, i # j. Define gl [t]-action on Pyp,:
n
Wék) : 65? Rt Z Oéffa,'ab,'.
i=1
Fix z = (z1,...,2k), Za # zp, a # b. Define gl [t]-action on Py,:

k
7T§n> : e,§-'7> Rt szfa,-@aj.

a=1
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Bethe algebras

Let eé?(x) = Z?;o(ef,? ® t%)x~>~1. Consider

(s () i)’ -
@S Ee) @)

The Bethe algebra B; ) ¢ U(gl,[t]) is the subalgebra generated by Bé?,
a=1,...,k, b>0.

Similarly, define ng C U(gl,[t]). Denote the corresponding generators

B, i=1,....nj>0.

Theorem ( [Huang, Mukhin], [Tarasov, U.] )
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Spaces of quasi-exponentials

Fix @ = (a1,...,an) € C" aj#aj, i #j, i = (D, .,
) = (6D 000,00, W) > 0 > s D s 0
Assume n; > 0.

Let V be a space of functions with a basis of the form
{e"pii(x)| i=1,...,n, j=1,....ni},

where pjj(x) are polynomials and deg p;; = n; + ,uj(-i) —J.

Let e(z) = (e1(2) > e2(z) > - - > en(z)) be exponents of V at a point
z € C, that is for each i = 1,...,n, there is f(x) € V such that

f(x) = (x — 2)5@)(1 + o(1)).

Define a partition \(z) by the rule: ej(z) =dim V + X\i(z) —i.
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Spaces of quasi-exponentials

A point z € C is called singular if A\(z) # (0,0,0,...).
Let {z1,..., 2k} be the set of all singular points of V.
Denote A(z,) = A?, z = (z1,...,z), A= (D, ..., AK),

We say that V' is a space of quasi-exponentials with the data
(i, \; @, 2).

The fundamental differential operator Dy of V is the unique monic
differential operator of order dim V' such that Dy/f = 0 for any f € V.
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Transformation Dy, — Dy

o Define the transformation D — D' of differential operators by:

()1 is an antiautomorphism,
() =4

X

(b(x))" = (X)-
D' is called the formal conjugate of D.

o Define the transformation D — D?¥ of differential operators with
polynomial coefficients by:

an antiautomorphism,

X,

D% is called the bispectral dual of D.
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Transformation Dy — Dy

There exists differential operator Dy such that

n 0)

d nj+pig .
H <dx — a,-> = DyDy.

i=1
Consider a chain of transformations:
Dy — Dy — DL — (pD\T/)i,

where p is the polynomal of minimal degree such that pD;r/ is a differential
operator with polynomial coefficients.

Theorem ( [Tarasov, U.] )

The space V= ker((pl_v);r/)i) is a space of quasi-exponentials with the data
(N, @5z, —a).

Let Dy be the fundamental differential operator of V.
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Weight subspaces P,[A, ]

FiX)\:(/l,...,/k), Iy € Z<o,a=1,..., k,
pw=(mi,...,mp), m € Zsg, i=1,...,n.
Consider a subspace B[, ] C Pin,

Brolh 1] = {p € Brnl €4 p = Lup, e,-<,~">p = mip}.

Both B§k> and B preserve the subspace Pyn[A, ).

«a
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Eigenvectors for Bethe algebras

Define i = (™, ..., (M) and X = (A, ... A(K)) by:
p) = (m;,0,0,...), A& =(1,...,1,0,0,...).
I

Theorem ( [Mukhin, Tarasov, Varchenko] )

@ There is a bijective correspondence:

{ eigenvectors of } { spaces of quasi—exponentia/s}
—

w7 (BE) in Baal 1] with the data (. ;)

o Similarly, there is a bijective correspondence:

eigenvectors of spaces of quasi-exponentials
*) gk ; — th the data (V. T 3. —&
W—&(BE ) mn sBkn[)‘a:u] with the data ( M1 Z, —Oé)

}

v
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Duality and spaces of quasi-exponentials

Let v € Pun[A, 1] be an eigenvector of w§"> (Bém), and let V be the
corresponding space of quasi-exponentials.

Notice that V/ corresponds to an eigenvector of wikg(Bé“) in PrnlA, 1.

Theorem ( [Tarasov, U.] )

The vector v is the eigenvetor of 7r<_k§é(8§k)) corresponding to V.
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Eigenvalues of Bethe algebras

Let bi(x) be the coefficients of Dy :

Dy = <(Z()" 4 ; bi(x) (i)n_i.

Let 3720 bijx~/ be the Laurent series of b;(x) at infinity.

Recall that the Bethe algebra Bé"> is generated by Bé.">, i=1...,n,
j=>0.

Theorem ( [Mukhin, Tarasov, Varchenko] )

{m)

The eigenvalue of B;

associated to eigenvector v is bj;.

e We can express coefficients of Dy in terms of coefficients of Dy
— we know how the eigenvalues of two Bethe algebras are linked.

@ These expressions lift to expressions for generators, which gives the
duality.
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Filipp Uvarov (IUPUI)

Thank You!

Duality for Bethe algebras



