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Key Objectives

I Introduce 3n−2 modified quantum difference sln Toda systems
(joint with M. Finkelberg, 2017)

I Generalization 1 (answering P. Etingof’s question): construct
3rk(g)−1 modified quantum difference Toda systems of type g
(joint with R. Gonin, 2018)

I Generalization 2 (answering B. Feigin’s question):
- construct higher rank rational/trigonometric Lax matrices
from antidominantly shifted Yangians/q.affine algebras
- obtain Bethe subalgebras in quantized Coulomb branches
(joint with R. Frassek and V. Pestun, 2019)
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Classical and Quantum Toda systems (type A)

I Toda lattice is the hamiltonian system with phase space R2n

(with its usual symplectic structure) and Hamiltonian

H =
1

2

n∑
i=1

p2
i +

n−1∑
i=1

eqi+1−qi

I Theorem (Toda, ’67): Toda lattice is completely integrable.

I This can be quantized: consider quantum Toda Hamiltonian

D2 =
1

2

n∑
i=1

∂2
xi

+
n−1∑
i=1

exi+1−xi

I Theorem (Toda): D2 defines a quantum integrable system:

there exist differential operators {Di}ni=1 such that

[Di ,Dj ] = 0 and {symbol(Di )}ni=1 generate C[∂x1 , . . . , ∂xn ]Σn
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Lax realization of Toda systems (type A)

I Consider the local Lax matrix

Li (z) =

(
z − pi eqi

−e−qi 0

)
, 1 ≤ i ≤ n

I Consider the complete monodromy matrix

L(z) = Ln(z) · · · L1(z) =

(
A(z) B(z)
C (z) D(z)

)
I Theorem (Faddeev-Takhtajan, ’79): The coefficients of z•

in A(z) are the Toda Hamiltonians.

I Same for quantum Toda system with local Lax matrices

Li (z) =

(
z + ∂xi exi

−e−xi 0

)
, 1 ≤ i ≤ n
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Quantum difference Toda system (type A)

I Further generalization: Ruijsenaars, Givental, Etingof,
Sevostyanov, ...

I The quantum difference Toda Hamiltonian

M2 =
n∑

i=1

T 2
i + (q − q−1)2

n−1∑
i=1

exi+1−xiTiTi+1,

where q = e~ and

Ti f (x1, . . . , xn) = f (x1, . . . , xi + ~, . . . , xn)

I Theorem (Ruijsenaars, ’90): There exists a family of
difference operators {Mi}ni=1 which pairwise commute and
are algebraically independent.

I As ~→ 0, recover quantum Toda system.
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Lax realization of quantum difference Toda (type A)

I Algebra Aq
n = 〈w±1

i ,D±1
i 〉ni=1 subject to Diwj = qδij wjDi .

I Identifying wi ↔ T−1
i ,Di ↔ e−xi , view Mi as elements of Aq

n.

I Consider the local Lax matrix

L0
i (z) =

(
w−1
i z1/2 − wiz

−1/2 D−1
i z1/2

−Diz
−1/2 0

)
, 1 ≤ i ≤ n

I Consider the complete monodromy matrix

L(z) = L0
n(z) · · · L0

1(z) =

(
A(z) B(z)
C (z) D(z)

)
I Theorem (Kuznetsov-Tsyganov, ’96): The coefficients of

z• in A(z) are the quantum difference Toda Hamiltonians.
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Three Lax matrices

I In addition to L0
i (z), consider

L−1
i (z) =

(
w−1
i − wiz

−1 wiD
−1
i

−wiDiz
−1 wi

)

L1
i (z) =

(
w−1
i z − wi w−1

i D−1
i z

−w−1
i Di −w−1

i

)

I For
~k = (kn, . . . , k1) ∈ {−1, 0, 1}n,

consider the mixed complete monodromy matrix

L~k(z) := Lknn (z) · · · Lk1
1 (z) =

(
A~k(z) B~k(z)
C~k(z) D~k(z)

)
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Modified quantum difference Toda systems (type A)

I Theorem (Finkelberg-T, ’17): Fix ~k ∈ {−1, 0, 1}n.
(a) The coefficients of z• in A~k(z) pairwise commute.

(b) A~k(z) = (−1)nw1 · · ·wn

(
zs − H

~k
2z

s+1 + z>s+1
)
, where

s =
∑n

j=1
kj−1

2 and Hamiltonian H
~k
2 equals

H
~k
2 =

n∑
j=1

w−2
j +

n−1∑
i=1

w−ki−1
i w

−ki+1−1
i+1 · Di

Di+1
+

ki+1=...=kj−1=1∑
1≤i<j−1≤n−1

w−ki−1
i · · ·w−kj−1

j · Di

Dj

(c) H
~k
2 is conjugate to H

~k ′
2 with ~k ′ = (0, kn−1, . . . , k2, 0).

I This produces 3n−2 quantum difference Toda systems.

I For ~k = ~0, recover the above standard q-Toda.
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Quantum (difference) Toda systems (general type)

I h ⊂ g – a Cartan subalgebra of a semisimple Lie algebra.

I The quantum Toda Hamiltonian corresponding to g is the
following differential operator on h:

D2 =
∆

2
+

r∑
i=1

e−αi (h), ∆ = Laplacian, {αi}ri=1−simple roots

I Theorem (Kazhdan-Kostant, ’78): D2 defines a quantum
integrable system.

I Following the ideas of Kazhdan-Kostant, a quantum difference
Toda system of type g was proposed independently by Etingof
and Sevostyanov in ’99.

I Theorem (Gonin-T, ’18): There are exactly 3rk(g)−1

quantum difference Toda systems, generalizing the above one.
In type A, they match those obtained via 3 Lax matrices.
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RLL relations for the three Lax matrices

I Question: What is so special about L−1(z), L0(z), L1(z)?

I The first approach to quantum groups (Faddeev’s school):

R −matrix
RLL
 Quantum group

I Consider the trigonometric R-matrix

R(z ,w) =


1 0 0 0

0 z−w
qz−q−1w

(q−q−1)z
qz−q−1w

0

0 (q−q−1)w
qz−q−1w

z−w
qz−q−1w

0

0 0 0 1

 ∈ End (C2 ⊗ C2)

I Proposition (Finkelberg-T, ’17): (a) The Lax matrices
Lk(z) (k = −1, 0, 1) satisfy the so-called RLL relations

R(z ,w)Lk1(z)Lk2(w) = Lk2(w)Lk1(z)R(z ,w)

and also have quantum determinant qdet(Lk(z)) = 1.
(b) Both relations also hold for L~k(z) with ~k ∈ {−1, 0, 1}n.
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I Question: What is so special about L−1(z), L0(z), L1(z)?
I The first approach to quantum groups (Faddeev’s school):

R −matrix
RLL
 Quantum group

I Consider the trigonometric R-matrix

R(z ,w) =


1 0 0 0

0 z−w
qz−q−1w

(q−q−1)z
qz−q−1w

0

0 (q−q−1)w
qz−q−1w

z−w
qz−q−1w

0

0 0 0 1

 ∈ End (C2 ⊗ C2)
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Lax matrices via shifted quantum affine sl2

I Question: How does one come up with these 3 Lax matrices?

I Due to RLL and qdet relations, Lk(z) (k = −1, 0, 1) may be
viewed as homomorphisms from analogues of Uq(Lsl2) to Aq

1 .

I In the new Drinfeld realization of Uq(Lsl2), one may shift
Fourier coordinates of Cartan generators by b+, b− ∈ Z,
leading to shifted quantum affine sl2, denoted Ub+,b−(Lsl2).

I For a ∈ Z≥0 such that N := 1
2 (a− b+ − b−) ∈ Z>0, there are

distinguished homomorphisms

Φa
b+,b− : Ub+,b−(Lsl2)→ Aq

N

I Theorem (Finkelberg-T, ’17): (a) The above three
analogues of Uq(Lsl2) are isomorphic to the shifted quantum
affine U0,−2(Lsl2),U−1,−1(Lsl2),U−2,0(Lsl2).
(b) The above homomorphisms from these three analogues to
Aq

1 coincide with Φ0
0,−2,Φ

0
−1,−1,Φ

0
−2,0.
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Higher rank generalization

I Question: Can we generalize this to n × n Lax matrices?

I Related literature:
- Physics: V. Bazhanov et. al., Z. Tsuboi, ...
- Mathematics: Hernandez-Jimbo (cf. Felder-Zhang)

I Our motivation comes from Frassek-Pestun (2018):
Input: a pair of Young diagrams λ,µ of total size n and a
collection of points {xi}–one for each column of λ
Output: a rational Lax matrix Lλ,x ,µ(z) linear in z with

qdet Lλ,x ,µ(z) =
∏

i

∏λt
i

k=1(z − xi − (k − 1)).

I Their Questions:
- Degeneration procedure (moving columns from λ to µ)
- Trigonometric counterpart (depending on 3 Young diagrams)
- Degeneration of trigonometric Lax to rational Lax

Sasha Tsymbaliuk Integrable systems via shifted quantum groups



Higher rank generalization

I Question: Can we generalize this to n × n Lax matrices?

I Related literature:
- Physics: V. Bazhanov et. al., Z. Tsuboi, ...
- Mathematics: Hernandez-Jimbo (cf. Felder-Zhang)

I Our motivation comes from Frassek-Pestun (2018):
Input: a pair of Young diagrams λ,µ of total size n and a
collection of points {xi}–one for each column of λ
Output: a rational Lax matrix Lλ,x ,µ(z) linear in z with

qdet Lλ,x ,µ(z) =
∏

i

∏λt
i

k=1(z − xi − (k − 1)).

I Their Questions:
- Degeneration procedure (moving columns from λ to µ)
- Trigonometric counterpart (depending on 3 Young diagrams)
- Degeneration of trigonometric Lax to rational Lax

Sasha Tsymbaliuk Integrable systems via shifted quantum groups



Higher rank generalization

I Question: Can we generalize this to n × n Lax matrices?

I Related literature:
- Physics: V. Bazhanov et. al., Z. Tsuboi, ...
- Mathematics: Hernandez-Jimbo (cf. Felder-Zhang)

I Our motivation comes from Frassek-Pestun (2018):
Input: a pair of Young diagrams λ,µ of total size n and a
collection of points {xi}–one for each column of λ
Output: a rational Lax matrix Lλ,x ,µ(z) linear in z with

qdet Lλ,x ,µ(z) =
∏

i

∏λt
i

k=1(z − xi − (k − 1)).

I Their Questions:
- Degeneration procedure (moving columns from λ to µ)
- Trigonometric counterpart (depending on 3 Young diagrams)
- Degeneration of trigonometric Lax to rational Lax

Sasha Tsymbaliuk Integrable systems via shifted quantum groups



Higher rank generalization

I Question: Can we generalize this to n × n Lax matrices?

I Related literature:
- Physics: V. Bazhanov et. al., Z. Tsuboi, ...
- Mathematics: Hernandez-Jimbo (cf. Felder-Zhang)

I Our motivation comes from Frassek-Pestun (2018):
Input: a pair of Young diagrams λ,µ of total size n and a
collection of points {xi}–one for each column of λ
Output: a rational Lax matrix Lλ,x ,µ(z) linear in z with

qdet Lλ,x ,µ(z) =
∏

i

∏λt
i

k=1(z − xi − (k − 1)).

I Their Questions:
- Degeneration procedure (moving columns from λ to µ)
- Trigonometric counterpart (depending on 3 Young diagrams)
- Degeneration of trigonometric Lax to rational Lax

Sasha Tsymbaliuk Integrable systems via shifted quantum groups



Higher rank generalization

I Theorem (Frassek-Pestun-T, ’19): (a) The shifted Yangian
Yµ(gln) admits an RLL realization iff µ–antidominant.
(b) Homomorphisms of [BFN, ’16] produce rational Lax

matrices Lλ,x ;µ(z) polynomial in z of degree |λ|+|µ|n for any
pair of Young diagrams of length < n and n||λ|+ |µ|.
(c) Lλ,x ;µ(z) is a normalized limit of Lλ∪µ,x∪x ′;∅(z), x ′? →∞.

I Theorem (Frassek-Pestun-T, ’19): (a) Uµ+,µ−(Lgln)
admits an RLL realization iff µ+, µ−–antidominant.
(b) Homomorphisms of [FT, ’17] produce trigonometric Lax

matrices Lλ,x ;µ+,µ−(z) polynomial in z of degree |λ|+|µ
+|+|µ−|
n

for any λ,µ+,µ− of length < n and n||λ|+ |µ+|+ |µ−|.
(c) Lλ,x ;µ+,µ−(z) is a normalized limit of Lλ∪µ+∪µ−,x∪x ′;∅,∅(z)
as x ′? → 0 or ∞.

I Also Lλ,x ;µ+,µ−(z) degenerates to Lλ,x ;µ+∪µ−(z).
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Corollaries

I Homomorphisms Yµ1+µ2(Lgln)→ Yµ1(Lgln)⊗ Yµ2(Lgln),
recovering the main construction of [FKPRW, ’16].

I Recover coproduct homomorphisms of [Finkelberg-T, ’17]:
Uµ+

1 +µ+
2 ,µ
−
1 +µ−2

(Lgln)→ Uµ+
1 ,µ
−
1

(Lgln)⊗ Uµ+
2 ,µ
−
2

(Lgln).

I The integral form of Uµ+,µ−(Lgln) (i.e. C[q, q−1]-subalgebra,
commutative at q = 1) of [Finkelberg-T, ’18] is immediate.

I New approach towards truncated shifted algebras.

I Obtain Bethe subalgebras B(C ) for C ∈ Matn×n(C).

I By the construction of [BFN, ’16] and [Finkelberg-T, ’17],
actually obtain Bethe subalgebras in quantized (K -theoretic)
Coulomb branches of type A quiver gauge theories
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The End

Thank you!
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