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Key Objectives

» Introduce 3”2 modified quantum difference sl, Toda systems
(joint with M. Finkelberg, 2017)

» Generalization 1 (answering P. Etingof’s question): construct
3'k(8)-1 modified quantum difference Toda systems of type g
(joint with R. Gonin, 2018)

» Generalization 2 (answering B. Feigin's question):
- construct higher rank rational/trigonometric Lax matrices
from antidominantly shifted Yangians/q.affine algebras
- obtain Bethe subalgebras in quantized Coulomb branches
(joint with R. Frassek and V. Pestun, 2019)
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Classical and Quantum Toda systems (type A)

» Toda lattice is the hamiltonian system with phase space R?"
(with its usual symplectic structure) and Hamiltonian

1 n n—1
—— 2 qi+1—qi
H_z,zgp’ *2}6 h
i= i=
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Classical and Quantum Toda systems (type A)

» Toda lattice is the hamiltonian system with phase space R?"
(with its usual symplectic structure) and Hamiltonian

1 n n—1
—— 2 qi+1—qi
H_z,zgp’ *2}6 h
i= i=

» Theorem (Toda, '67): Toda lattice is completely integrable.
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Classical and Quantum Toda systems (type A)

» Toda lattice is the hamiltonian system with phase space R?"
(with its usual symplectic structure) and Hamiltonian

1 n n—1
H = 5 Zp? + Z edit1=Gi
i=1 i=1
» Theorem (Toda, '67): Toda lattice is completely integrable.

» This can be quantized: consider quantum Toda Hamiltonian

1 n n—1
2 i1 X
D2—2;GX,+;eX+1 X
i= i=
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Classical and Quantum Toda systems (type A)

» Toda lattice is the hamiltonian system with phase space R?"
(with its usual symplectic structure) and Hamiltonian

1 n n—1
H = 5 Zp? + Z edit1=Gi
i=1 i=1
» Theorem (Toda, '67): Toda lattice is completely integrable.
» This can be quantized: consider quantum Toda Hamiltonian
1 n n—1
D=3+ S e
i=1 i=1

» Theorem (Toda): D, defines a quantum integrable system:
there exist differential operators {D;}7_; such that

[D;, Dj] = 0 and {symbol(D;)}7_; generate C[dy,, . . ., Ox,]>"
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Lax realization of Toda systems (type A)

» Consider the local Lax matrix

— p: qi
L,(z):(z_e_g; % ) 1<i<n
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Lax realization of Toda systems (type A)

» Consider the local Lax matrix
—p- qi
L,-(z):(z pi eo >,1§i§n

_e_ql

» Consider the complete monodromy matrix

- (8 33)
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Lax realization of Toda systems (type A)

» Consider the local Lax matrix

— p: qi
L,(z):(z_e_g; % ) 1<i<n

» Consider the complete monodromy matrix

-0 (8 33)

» Theorem (Faddeev-Takhtajan, '79): The coefficients of z*
in A(z) are the Toda Hamiltonians.
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Lax realization of Toda systems (type A)

» Consider the local Lax matrix

— D qi
L,-(z):(z pi eo >,1§i§n

_e_ql

» Consider the complete monodromy matrix

-0 (8 33)

» Theorem (Faddeev-Takhtajan, '79): The coefficients of z*
in A(z) are the Toda Hamiltonians.

» Same for quantum Toda system with local Lax matrices

X;
L,-(z)_<z+ax" e ) 1<i<n

_e_Xi 0
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Quantum difference Toda system (type A)

» Further generalization: Ruijsenaars, Givental, Etingof,
Sevostyanov, ...
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Quantum difference Toda system (type A)

» Further generalization: Ruijsenaars, Givental, Etingof,
Sevostyanov, ...
» The quantum difference Toda Hamiltonian

n n—1
My=Y TP +(qg—q )Y e TTip,
i=1 i=1

where g = e’ and

Tif(x1, ..y xn) =f(x1, ..., X+ Ry oty Xp)
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Quantum difference Toda system (type A)

» Further generalization: Ruijsenaars, Givental, Etingof,
Sevostyanov, ...

» The quantum difference Toda Hamiltonian
n n—1
My=Y TP +(qg—q )Y e TTip,
i=1 i=1
where g = e’ and
Tif(x1, ..y xn) =f(x1, ..., X+ Ry oty Xp)

» Theorem (Ruijsenaars, '90): There exists a family of
difference operators {M;}?_; which pairwise commute and
are algebraically independent.
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Quantum difference Toda system (type A)

» Further generalization: Ruijsenaars, Givental, Etingof,
Sevostyanov, ...

» The quantum difference Toda Hamiltonian
n n—1
My=Y TP +(qg—q )Y e TTip,
i=1 i=1
where g = e’ and
Tif(x1, ..y xn) =f(x1, ..., X+ Ry oty Xp)

» Theorem (Ruijsenaars, '90): There exists a family of
difference operators {M;}?_; which pairwise commute and
are algebraically independent.

> As h — 0, recover quantum Toda system.
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Lax realization of quantum difference Toda (type A)

» Algebra A7 = (W?:l, D?E1>,’-’:1 subject to D;w; = q%w;D;.
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Lax realization of quantum difference Toda (type A)

» Algebra A7 = (W?:l, D?E1>,’-’:1 subject to D;w; = q%w;D;.
> |dentifying w; <> Ti_l, D; > e, view M; as elements of Aj7.
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Lax realization of quantum difference Toda (type A)

» Algebra A7 = (W?:l, D?E1>,’-’:1 subject to D;w; = q%w;D;.

> |dentifying w; <> Ti_l, D; > e, view M; as elements of Aj7.
» Consider the local Lax matrix
—1_1/2 —-1/2 —1_1/2
L?(z)z(w" S > 1

—D,;z1/2 0 sisn
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Lax realization of quantum difference Toda (type A)

» Algebra A7 = (W?:l, D?E1>,’-’:1 subject to D;w; = q%w;D;.
> |dentifying w; <> Ti_l, D; > e, view M; as elements of Aj7.
» Consider the local Lax matrix

“1,1/2 _ . ,~1/2 p=1,1/2
Wz Wiz Tz .
L?(z):< Tl ; >,1§/§n

» Consider the complete monodromy matrix

-t (43 53
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Lax realization of quantum difference Toda (type A)

» Algebra A7 = (W?:l, D?E1>,’-’:1 subject to D;w; = q%w;D;.
> |dentifying w; <> Ti_l, D; > e, view M; as elements of Aj7.

» Consider the local Lax matrix

“1,1/2 _\,-1/2 p=1,1/2
w: "tz w;z iz
5 = (", ;)

» Consider the complete monodromy matrix

<i<n

=g 0= (43 53

» Theorem (Kuznetsov-Tsyganov, '96): The coefficients of
z® in A(z) are the quantum difference Toda Hamiltonians.
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Three Lax matrices

» In addition to L9(z), consider

“1_ -1 -l
Li_l(z) _ < w; w;z w;D; >

—W,‘D,’Zi1 W;

-1 —1n-—1
w:z—w; w,. D"z
L}(Z)_< I_Wle,l I_Wil )
1D, ;

1 1
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Three Lax matrices

» In addition to L9(z), consider

L) = (" Wit iz W’Df1>

—W,D z~ Wi

-1 —1n-—1
w:z—w; w,. D"z
L}(Z)_< I_Wle,l I_Wil )
1D, ;

1 1

> For
k = (km .. '7k1) € {_1)07 1}n7

consider the mixed complete monodromy matrix

Lot = L)L) = () B )
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Modified quantum difference Toda systems (type A)

> Theorem (Finkelberg-T, '17): Fix k € {—1,0,1}".
(a) The coefficients of z* in A;(z) pairwise commute.
(b) Ap(z) = (=1)"wy1---w, ( S — HEZerl + z>s+1) , Where

k-1
s=3 1 %5 and Hamiltonian H5 equals

= +Z T 2
j=1

Dl+1
kiy1=...=kj_
Z ket ke D
i J D:
1<i<j—1<n—1 J

(c) Hg is conjugate to Hg’ with kK = (0, kn_1, . . ., k2, 0).
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Modified quantum difference Toda systems (type A)

> Theorem (Finkelberg-T, '17): Fix k € {—1,0,1}".
(a) The coefficients of z* in A;(z) pairwise commute.
(b) Ap(z) = (=1)"wy1---w, ( S — HEZerl + z>s+1) , Where

k-1
s=3 1 %5 and Hamiltonian H5 equals

= +Z T 2
j=1

Dl+1
kiy1=...=kj_
Z ket ke D
i J D:
1<i<j—1<n—1 J

(c) Hg is conjugate to Hg’ with k' = (0, kn_1, . . ., k2, 0).
» This produces 372 quantum difference Toda systems.

Sasha Tsymbaliuk Integrable systems via shifted quantum groups



Modified quantum difference Toda systems (type A)

> Theorem (Finkelberg-T, '17): Fix k € {—1,0,1}".
(a) The coefficients of z* in A;(z) pairwise commute.
(b) Ap(z) = (=1)"wy1---w, < S — HEZerl + z>s+1) , Where

k-1
s=3 1 %5 and Hamiltonian H5 equals

= +Z T 2
j=1

Dl+1
kiy1=...=kj_
Z ket ke D
i J D:
1<i<j—1<n—1 J

(c) Hg is conjugate to Hg’ with k' = (0, kn_1, . . ., k2, 0).
» This produces 372 quantum difference Toda systems.

» For k = 0, recover the above standard g-Toda.



Quantum (difference) Toda systems (general type)

> h C g — a Cartan subalgebra of a semisimple Lie algebra.
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Quantum (difference) Toda systems (general type)

> h C g — a Cartan subalgebra of a semisimple Lie algebra.

» The quantum Toda Hamiltonian corresponding to g is the
following differential operator on b:

A r
D, = E—FZ e~ A = Laplacian, {@j}i_; —simple roots
i=1
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Quantum (difference) Toda systems (general type)

> h C g — a Cartan subalgebra of a semisimple Lie algebra.

» The quantum Toda Hamiltonian corresponding to g is the
following differential operator on b:

A r
D, = E—i-z e~ (M A = Laplacian, {o;}/_; —simple roots
i=1

» Theorem (Kazhdan-Kostant, '78): D, defines a quantum
integrable system.
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Quantum (difference) Toda systems (general type)

> h C g — a Cartan subalgebra of a semisimple Lie algebra.

» The quantum Toda Hamiltonian corresponding to g is the
following differential operator on b:

A r
D, = E—i-z e~ (M A = Laplacian, {o;}/_; —simple roots
i=1
» Theorem (Kazhdan-Kostant, '78): D, defines a quantum
integrable system.

» Following the ideas of Kazhdan-Kostant, a quantum difference
Toda system of type g was proposed independently by Etingof
and Sevostyanov in '99.
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Quantum (difference) Toda systems (general type)

| 2
| 2

h C g — a Cartan subalgebra of a semisimple Lie algebra.

The quantum Toda Hamiltonian corresponding to g is the
following differential operator on b:

A r
D, = E—FZ e~ A = Laplacian, {@j}i_; —simple roots
i=1
Theorem (Kazhdan-Kostant, '78): D, defines a quantum
integrable system.
Following the ideas of Kazhdan-Kostant, a quantum difference

Toda system of type g was proposed independently by Etingof
and Sevostyanov in '99.

Theorem (Gonin-T, '18): There are exactly 3k(8)-1
quantum difference Toda systems, generalizing the above one.
In type A, they match those obtained via 3 Lax matrices.
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RLL relations for the three Lax matrices

» Question: What is so special about L=%(z), L%(z), L*(2)?
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RLL relations for the three Lax matrices

» Question: What is so special about L=%(z), L%(z), L*(2)?
» The first approach to quantum groups (Faddeev's school):

R — matrix " Quantum group
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RLL relations for the three Lax matrices

» Question: What is so special about L=%(z), L%(z), L*(2)?
» The first approach to quantum groups (Faddeev's school):

R — matrix " Quantum group

» Consider the trigonometric R-matrix

1 0 0 0
2w (q—q:II)Z 0
R(z, w) = Gy 9 € End (C2 ® C?)
0 gz—q~lw  qz—q 1w 0
0 0 0 1
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RLL relations for the three Lax matrices

» Question: What is so special about L=%(z), L%(z), L*(2)?
» The first approach to quantum groups (Faddeev's school):

R — matrix " Quantum group

» Consider the trigonometric R-matrix

1 0 0 0
2w (q—q:II)Z 0
R(z,w) = A € End (C?>® C?)
gz—q~lw  qz—q 1w 0
0 0 0 1

» Proposition (Finkelberg-T, '17): (a) The Lax matrices
L¥(z) (k = —1,0,1) satisfy the so-called RLL relations

R(z, w)L{(2)L5(w) = L5(w)L{(2)R(z, w)

and also have quantum determinant qdet(L*(z)) = 1.
(b) Both relations also hold for Li(z) with k € {-1,0,1}".
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Lax matrices via shifted quantum affine sl

» Question: How does one come up with these 3 Lax matrices?
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Lax matrices via shifted quantum affine sl

» Question: How does one come up with these 3 Lax matrices?

» Due to RLL and gdet relations, L*(z) (k = —1,0,1) may be
viewed as homomorphisms from analogues of Ug(Lsly) to A7.
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Lax matrices via shifted quantum affine sl

» Question: How does one come up with these 3 Lax matrices?

» Due to RLL and gdet relations, L*(z) (k = —1,0,1) may be
viewed as homomorphisms from analogues of Ug(Lsly) to A7.

» In the new Drinfeld realization of Uy(Lsl>), one may shift
Fourier coordinates of Cartan generators by b*, b~ € Z,
leading to shifted quantum affine sl, denoted Uyt - (Lsl2).
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Lax matrices via shifted quantum affine sl

Question: How does one come up with these 3 Lax matrices?
» Due to RLL and gdet relations, L*(z) (k = —1,0,1) may be
viewed as homomorphisms from analogues of Ug(Lsly) to A7.
» In the new Drinfeld realization of Uy(Lsl>), one may shift
Fourier coordinates of Cartan generators by b*, b~ € Z,
leading to shifted quantum affine sl, denoted Uyt - (Lsl2).
> For a € Z>g such that N := 3(a— bt — b™) € Z~, there are
distinguished homomorphisms

v

¢7)+,b— : Ub+,b—(L5[2) — A‘,qv
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Lax matrices via shifted quantum affine sl

Question: How does one come up with these 3 Lax matrices?
» Due to RLL and gdet relations, L*(z) (k = —1,0,1) may be
viewed as homomorphisms from analogues of Ug(Lsly) to A7.
» In the new Drinfeld realization of Uy(Lsl>), one may shift
Fourier coordinates of Cartan generators by b*, b~ € Z,
leading to shifted quantum affine sl, denoted Uyt - (Lsl2).
> For a € Z>g such that N := 3(a— bt — b™) € Z~, there are
distinguished homomorphisms

v

(D?ﬁ,b— : Ub+,b—(L5[2) — A‘,qv

» Theorem (Finkelberg-T, '17): (a) The above three
analogues of Uq(Lsly) are isomorphic to the shifted quantum
affine Uo,,z(lez), U,L,l(lez), U,Q,o(L5[2).

(b) The above homomorphisms from these three analogues to
Ai’ coincide with ¢87_2,¢917_1,¢9270.
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Higher rank generalization

» Question: Can we generalize this to n x n Lax matrices?
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Higher rank generalization

» Question: Can we generalize this to n x n Lax matrices?

> Related literature:
- Physics: V. Bazhanov et. al., Z. Tsuboi, ...
- Mathematics: Hernandez-Jimbo (cf. Felder-Zhang)
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Higher rank generalization

» Question: Can we generalize this to n x n Lax matrices?

> Related literature:
- Physics: V. Bazhanov et. al., Z. Tsuboi, ...
- Mathematics: Hernandez-Jimbo (cf. Felder-Zhang)

» Our motivation comes from Frassek-Pestun (2018):
Input: a pair of Young diagrams A, p of total size n and a
collection of points {x;}—one for each column of A
Output: a rational Lax matrix Ly , ,,(z) linear in z with

adet Ly u(2) = T[T, (2 — xi — (k — 1)).
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Higher rank generalization

>
>

| 2

Question: Can we generalize this to n x n Lax matrices?

Related literature:
- Physics: V. Bazhanov et. al., Z. Tsuboi, ...
- Mathematics: Hernandez-Jimbo (cf. Felder-Zhang)

Our motivation comes from Frassek-Pestun (2018):

Input: a pair of Young diagrams A, p of total size n and a
collection of points {x;}—one for each column of A
Output: a rational Lax matrix Ly , ,,(z) linear in z with

t
adet Lau(2) = TL T (2 = % — (k= 1).
Their Questions:
- Degeneration procedure (moving columns from A to p)
- Trigonometric counterpart (depending on 3 Young diagrams)
- Degeneration of trigonometric Lax to rational Lax
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Higher rank generalization

» Theorem (Frassek-Pestun-T, '19): (a) The shifted Yangian
Y.(gl,) admits an RLL realization iff y—antidominant.
(b) Homomorphisms of [BFN, '16] produce rational Lax
matrices Ly x.,.(z) polynomial in z of degree M for any
pair of Young diagrams of length < n and n||A| + |p|.
(c) Lax;u(2) is a normalized limit of Ly, xux:0(2), X3 — 0.
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Higher rank generalization

» Theorem (Frassek-Pestun-T, '19): (a) The shifted Yangian
Y.(gl,) admits an RLL realization iff y—antidominant.
(b) Homomorphisms of [BFN, '16] produce rational Lax
matrices L x.,,(z) polynomial in z of degree % for any
pair of Young diagrams of length < n and n||A| + |p|.
(c) Lax;u(2) is a normalized limit of Ly, xux:0(2), X3 — 0.
» Theorem (Frassek-Pestun-T, '19): (a) U,+ ,-(Lgl,)
admits an RLL realization iff u*, y~—antidominant.
(b) Homomorphisms of [FT, '17] produce trigonometric Lax
matrices Ly ,.,+ 4, (2) polynomial in z of degree Al |
for any A, ut, u™ of length < nand n||A| + || + |17
(€) Laxpt u(2) is @ normalized limit of Lyy,+ U xux':0,0(2)
as x5 — 0 or oo,
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Higher rank generalization

» Theorem (Frassek-Pestun-T, '19): (a) The shifted Yangian
Y.(gl,) admits an RLL realization iff y—antidominant.
(b) Homomorphisms of [BFN, '16] produce rational Lax
matrices L x.,,(z) polynomial in z of degree % for any
pair of Young diagrams of length < n and n||A| + |p|.
(c) Lax;u(2) is a normalized limit of Ly, xux:0(2), X3 — 0.
» Theorem (Frassek-Pestun-T, '19): (a) U,+ ,-(Lgl,)
admits an RLL realization iff u*, y~—antidominant.
(b) Homomorphisms of [FT, '17] produce trigonometric Lax
matrices Ly ,.,+ 4, (2) polynomial in z of degree Al |
for any A, ut, u™ of length < nand n||A| + || + |17
(€) Laxpt u(2) is @ normalized limit of Lyy,+ U xux':0,0(2)
as x5 — 0 or oo,

» Also Ly .+ 4 (2) degenerates to Ly .+ (2)-
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Corollaries

» Homomorphisms Y}, 1,,,(Lgl,) = Yy, (Lgl,) ® Y., (Lgl,),
recovering the main construction of [FKPRW, '16].
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Corollaries

» Homomorphisms Y}, 1,,,(Lgl,) = Yy, (Lgl,) ® Y., (Lgl,),
recovering the main construction of [FKPRW, '16].

» Recover coproduct homomorphisms of [Finkelberg-T, '17]:
UM1++M2+7M1_+“2_(L9[,,) - U/ﬁ,uf(Lg[n) ® Uu;',MQ_(Lg[n)'
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Corollaries

» Homomorphisms Y}, 1,,,(Lgl,) = Yy, (Lgl,) ® Y., (Lgl,),
recovering the main construction of [FKPRW, '16].
» Recover coproduct homomorphisms of [Finkelberg-T, '17]:

UM1++M2+7M1_+“2_(L9[,,) - U/ﬁ,uf(Lg[n) ® Uu;,M;(LEl[n)-

> The integral form of U,+ ,-(Lgl,) (i.e. C[q, g~ ']-subalgebra,
commutative at g = 1) of [Finkelberg-T, '18] is immediate.

Sasha Tsymbaliuk Integrable systems via shifted quantum groups



Corollaries

» Homomorphisms Y}, 1,,,(Lgl,) = Yy, (Lgl,) ® Y., (Lgl,),
recovering the main construction of [FKPRW, '16].

» Recover coproduct homomorphisms of [Finkelberg-T, '17]:
Uu{’+u§“,u1_+u{(Lg[") - qu,uf(Lg[”) ® Uu;uz_(Lg[")'

> The integral form of U,+ ,-(Lgl,) (i.e. C[q, g~ ']-subalgebra,
commutative at g = 1) of [Finkelberg-T, '18] is immediate.

» New approach towards truncated shifted algebras.
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Corollaries

» Homomorphisms Y}, 1,,,(Lgl,) = Yy, (Lgl,) ® Y., (Lgl,),
recovering the main construction of [FKPRW, '16].

» Recover coproduct homomorphisms of [Finkelberg-T, '17]:
Uu{’+u§“,u1_+u{(Lg[") - qu,uf(Lg[”) ® Uu;uz_(Lg[")'

> The integral form of U,+ ,-(Lgl,) (i.e. C[q, g~ ']-subalgebra,
commutative at g = 1) of [Finkelberg-T, '18] is immediate.

» New approach towards truncated shifted algebras.

» Obtain Bethe subalgebras B(C) for C € Mat,«,(C).
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Corollaries

» Homomorphisms Y}, 1,,,(Lgl,) = Yy, (Lgl,) ® Y., (Lgl,),
recovering the main construction of [FKPRW, '16].

» Recover coproduct homomorphisms of [Finkelberg-T, '17]:
U“T+/J“3—7“1_+/'L2_(Lg[n) - UHT,N;(Lg[n) ® Uu;7M;(Lg[n)

> The integral form of U,+ ,-(Lgl,) (i.e. C[q, g~ ']-subalgebra,
commutative at g = 1) of [Finkelberg-T, '18] is immediate.

» New approach towards truncated shifted algebras.

» Obtain Bethe subalgebras B(C) for C € Mat,«,(C).

» By the construction of [BFN, '16] and [Finkelberg-T, '17],
actually obtain Bethe subalgebras in quantized (K-theoretic)
Coulomb branches of type A quiver gauge theories
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Thank you!
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