Integrable systems via shifted quantum groups

Sasha Tsymbaliuk

Yale

08/16/2019 Representation Theory and Integrable Systems In honor of Vitaly Tarasov & Alexander Varchenko

・ 同 ト ・ ヨ ト ・ ヨ ト

 Introduce 3ⁿ⁻² modified quantum difference sl_n Toda systems (joint with M. Finkelberg, 2017)

A (10) × (10) × (10) ×

 Introduce 3ⁿ⁻² modified quantum difference sl_n Toda systems (joint with M. Finkelberg, 2017)

 Generalization 1 (answering P. Etingof's question): construct 3^{rk(g)-1} modified quantum difference Toda systems of type g (joint with R. Gonin, 2018)

A (1) × (2) × (3) ×

 Introduce 3ⁿ⁻² modified quantum difference sl_n Toda systems (joint with M. Finkelberg, 2017)

 Generalization 1 (answering P. Etingof's question): construct 3^{rk(g)-1} modified quantum difference Toda systems of type g (joint with R. Gonin, 2018)

Generalization 2 (answering B. Feigin's question):
 construct higher rank rational/trigonometric Lax matrices from antidominantly shifted Yangians/q.affine algebras
 obtain Bethe subalgebras in quantized Coulomb branches (joint with R. Frassek and V. Pestun, 2019)

► Toda lattice is the hamiltonian system with phase space ℝ²ⁿ (with its usual symplectic structure) and Hamiltonian

$$H = \frac{1}{2} \sum_{i=1}^{n} p_i^2 + \sum_{i=1}^{n-1} e^{q_{i+1} - q_i}$$

► Toda lattice is the hamiltonian system with phase space ℝ²ⁿ (with its usual symplectic structure) and Hamiltonian

$$H = \frac{1}{2} \sum_{i=1}^{n} p_i^2 + \sum_{i=1}^{n-1} e^{q_{i+1} - q_i}$$

Theorem (Toda, '67): Toda lattice is completely integrable.

► Toda lattice is the hamiltonian system with phase space ℝ²ⁿ (with its usual symplectic structure) and Hamiltonian

$$H = \frac{1}{2} \sum_{i=1}^{n} p_i^2 + \sum_{i=1}^{n-1} e^{q_{i+1} - q_i}$$

Theorem (Toda, '67): Toda lattice is completely integrable.

This can be quantized: consider quantum Toda Hamiltonian

$$\mathcal{D}_2 = \frac{1}{2} \sum_{i=1}^n \partial_{x_i}^2 + \sum_{i=1}^{n-1} e^{x_{i+1} - x_i}$$

► Toda lattice is the hamiltonian system with phase space ℝ²ⁿ (with its usual symplectic structure) and Hamiltonian

$$H = \frac{1}{2} \sum_{i=1}^{n} p_i^2 + \sum_{i=1}^{n-1} e^{q_{i+1} - q_i}$$

Theorem (Toda, '67): Toda lattice is completely integrable.

This can be quantized: consider quantum Toda Hamiltonian

$$\mathcal{D}_2 = rac{1}{2} \sum_{i=1}^n \partial_{x_i}^2 + \sum_{i=1}^{n-1} e^{x_{i+1} - x_i}$$

▶ Theorem (Toda): D₂ defines a quantum integrable system:

there exist differential operators $\{\mathcal{D}_i\}_{i=1}^n$ such that $[\mathcal{D}_i, \mathcal{D}_j] = 0$ and $\{\text{symbol}(\mathcal{D}_i)\}_{i=1}^n$ generate $\mathbb{C}[\partial_{x_1}, \ldots, \partial_{x_n}]^{\Sigma_n}$

A D D A D D A D D A D D A

Consider the local Lax matrix

$$L_i(z) = \begin{pmatrix} z - p_i & e^{q_i} \\ -e^{-q_i} & 0 \end{pmatrix}, \ 1 \le i \le n$$

臣

Consider the local Lax matrix

$$L_i(z) = \begin{pmatrix} z - p_i & e^{q_i} \\ -e^{-q_i} & 0 \end{pmatrix}, \ 1 \le i \le n$$

Consider the complete monodromy matrix

$$L(z) = L_n(z) \cdots L_1(z) = \begin{pmatrix} A(z) & B(z) \\ C(z) & D(z) \end{pmatrix}$$

Consider the local Lax matrix

$$L_i(z) = \begin{pmatrix} z - p_i & e^{q_i} \\ -e^{-q_i} & 0 \end{pmatrix}, \ 1 \le i \le n$$

Consider the complete monodromy matrix

$$L(z) = L_n(z) \cdots L_1(z) = \begin{pmatrix} A(z) & B(z) \\ C(z) & D(z) \end{pmatrix}$$

Theorem (Faddeev-Takhtajan, '79): The coefficients of z[•] in A(z) are the Toda Hamiltonians.

通 ト イ ヨ ト イ ヨ ト

Consider the local Lax matrix

$$L_i(z) = \left(egin{array}{cc} z - p_i & e^{q_i} \ -e^{-q_i} & 0 \end{array}
ight), \ 1 \leq i \leq n$$

Consider the complete monodromy matrix

$$L(z) = L_n(z) \cdots L_1(z) = \begin{pmatrix} A(z) & B(z) \\ C(z) & D(z) \end{pmatrix}$$

Theorem (Faddeev-Takhtajan, '79): The coefficients of z[•] in A(z) are the Toda Hamiltonians.

Same for quantum Toda system with *local Lax matrices*

$$L_i(z) = \begin{pmatrix} z + \partial_{x_i} & e^{x_i} \\ -e^{-x_i} & 0 \end{pmatrix}, \ 1 \le i \le n$$

白 ト イ ヨ ト イ ヨ ト

 Further generalization: Ruijsenaars, Givental, Etingof, Sevostyanov, ...

イロト イポト イヨト イヨト

臣

- Further generalization: Ruijsenaars, Givental, Etingof, Sevostyanov, ...
- The quantum difference Toda Hamiltonian

$$\mathcal{M}_2 = \sum_{i=1}^n T_i^2 + (q - q^{-1})^2 \sum_{i=1}^{n-1} e^{x_{i+1} - x_i} T_i T_{i+1},$$

where
$${\it q}={\it e}^{\hbar}$$
 and

$$T_if(x_1,\ldots,x_n)=f(x_1,\ldots,x_i+\hbar,\ldots,x_n)$$

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶

Э

- Further generalization: Ruijsenaars, Givental, Etingof, Sevostyanov, ...
- The quantum difference Toda Hamiltonian

$$\mathcal{M}_2 = \sum_{i=1}^n T_i^2 + (q - q^{-1})^2 \sum_{i=1}^{n-1} e^{x_{i+1} - x_i} T_i T_{i+1},$$

where $q = e^{\hbar}$ and

$$T_i f(x_1,\ldots,x_n) = f(x_1,\ldots,x_i+\hbar,\ldots,x_n)$$

Theorem (Ruijsenaars, '90): There exists a family of difference operators {M_i}ⁿ_{i=1} which pairwise commute and are algebraically independent.

・ 同 ト ・ ヨ ト ・ ヨ ト ・

- Further generalization: Ruijsenaars, Givental, Etingof, Sevostyanov, ...
- The quantum difference Toda Hamiltonian

$$\mathcal{M}_2 = \sum_{i=1}^n T_i^2 + (q - q^{-1})^2 \sum_{i=1}^{n-1} e^{x_{i+1} - x_i} T_i T_{i+1},$$

where $q = e^{\hbar}$ and

$$T_i f(x_1,\ldots,x_n) = f(x_1,\ldots,x_i+\hbar,\ldots,x_n)$$

- Theorem (Ruijsenaars, '90): There exists a family of difference operators {*M_i*}ⁿ_{i=1} which pairwise commute and are algebraically independent.
- As $\hbar \rightarrow 0$, recover quantum Toda system.

► Algebra
$$A_n^q = \langle \mathsf{w}_i^{\pm 1}, \mathsf{D}_i^{\pm 1} \rangle_{i=1}^n$$
 subject to $\mathsf{D}_i \mathsf{w}_j = q^{\delta_{ij}} \mathsf{w}_j \mathsf{D}_i$.

伺下 イヨト イヨト

臣

- ► Algebra $A_n^q = \langle \mathsf{w}_i^{\pm 1}, \mathsf{D}_i^{\pm 1} \rangle_{i=1}^n$ subject to $\mathsf{D}_i \mathsf{w}_j = q^{\delta_{ij}} \mathsf{w}_j \mathsf{D}_i$.
- ▶ Identifying $w_i \leftrightarrow T_i^{-1}$, $D_i \leftrightarrow e^{-x_i}$, view \mathcal{M}_i as elements of A_n^q .

• • = • • = •

- ► Algebra $A_n^q = \langle \mathsf{w}_i^{\pm 1}, \mathsf{D}_i^{\pm 1} \rangle_{i=1}^n$ subject to $\mathsf{D}_i \mathsf{w}_j = q^{\delta_{ij}} \mathsf{w}_j \mathsf{D}_i$.
- ▶ Identifying $w_i \leftrightarrow T_i^{-1}$, $D_i \leftrightarrow e^{-x_i}$, view \mathcal{M}_i as elements of A_n^q .
- Consider the local Lax matrix

$$L_i^0(z) = \begin{pmatrix} w_i^{-1} z^{1/2} - w_i z^{-1/2} & D_i^{-1} z^{1/2} \\ -D_i z^{-1/2} & 0 \end{pmatrix}, \ 1 \le i \le n$$

► Algebra
$$A_n^q = \langle \mathsf{w}_i^{\pm 1}, \mathsf{D}_i^{\pm 1} \rangle_{i=1}^n$$
 subject to $\mathsf{D}_i \mathsf{w}_j = q^{\delta_{ij}} \mathsf{w}_j \mathsf{D}_i$.

- ▶ Identifying $w_i \leftrightarrow T_i^{-1}$, $D_i \leftrightarrow e^{-x_i}$, view \mathcal{M}_i as elements of A_n^q .
- Consider the local Lax matrix

$$L_i^0(z) = \begin{pmatrix} w_i^{-1} z^{1/2} - w_i z^{-1/2} & D_i^{-1} z^{1/2} \\ -D_i z^{-1/2} & 0 \end{pmatrix}, \ 1 \le i \le n$$

Consider the complete monodromy matrix

$$L(z) = L_n^0(z) \cdots L_1^0(z) = \begin{pmatrix} A(z) & B(z) \\ C(z) & D(z) \end{pmatrix}$$

.

► Algebra
$$A_n^q = \langle \mathsf{w}_i^{\pm 1}, \mathsf{D}_i^{\pm 1} \rangle_{i=1}^n$$
 subject to $\mathsf{D}_i \mathsf{w}_j = q^{\delta_{ij}} \mathsf{w}_j \mathsf{D}_i$.

- ► Identifying $w_i \leftrightarrow T_i^{-1}$, $D_i \leftrightarrow e^{-x_i}$, view \mathcal{M}_i as elements of A_n^q .
- Consider the local Lax matrix

$$L_i^0(z) = \begin{pmatrix} w_i^{-1} z^{1/2} - w_i z^{-1/2} & D_i^{-1} z^{1/2} \\ -D_i z^{-1/2} & 0 \end{pmatrix}, \ 1 \le i \le n$$

Consider the complete monodromy matrix

$$L(z) = L_n^0(z) \cdots L_1^0(z) = \begin{pmatrix} A(z) & B(z) \\ C(z) & D(z) \end{pmatrix}$$

Theorem (Kuznetsov-Tsyganov, '96): The coefficients of z[•] in A(z) are the quantum difference Toda Hamiltonians.

Three Lax matrices

▶ In addition to $L_i^0(z)$, consider

$$L_{i}^{-1}(z) = \begin{pmatrix} w_{i}^{-1} - w_{i}z^{-1} & w_{i}D_{i}^{-1} \\ -w_{i}D_{i}z^{-1} & w_{i} \end{pmatrix}$$

$$L_{i}^{1}(z) = \begin{pmatrix} w_{i}^{-1}z - w_{i} & w_{i}^{-1}D_{i}^{-1}z \\ -w_{i}^{-1}D_{i} & -w_{i}^{-1} \end{pmatrix}$$

・ロト ・回ト ・ヨト ・ヨト

臣

Three Lax matrices

ln addition to $L_i^0(z)$, consider

$$L_{i}^{-1}(z) = \begin{pmatrix} w_{i}^{-1} - w_{i}z^{-1} & w_{i}D_{i}^{-1} \\ -w_{i}D_{i}z^{-1} & w_{i} \end{pmatrix}$$

$$L_{i}^{1}(z) = \begin{pmatrix} w_{i}^{-1}z - w_{i} & w_{i}^{-1}D_{i}^{-1}z \\ -w_{i}^{-1}D_{i} & -w_{i}^{-1} \end{pmatrix}$$

For

$$\vec{k} = (k_n, \ldots, k_1) \in \{-1, 0, 1\}^n,$$

consider the mixed complete monodromy matrix

$$L_{\vec{k}}(z) := L_{n}^{k_{n}}(z) \cdots L_{1}^{k_{1}}(z) = \begin{pmatrix} A_{\vec{k}}(z) & B_{\vec{k}}(z) \\ C_{\vec{k}}(z) & D_{\vec{k}}(z) \end{pmatrix}$$

> < 물 > < 물 >

臣

Modified quantum difference Toda systems (type A)

▶ Theorem (Finkelberg-T, '17): Fix $\vec{k} \in \{-1, 0, 1\}^n$. (a) The coefficients of z^{\bullet} in $A_{\vec{k}}(z)$ pairwise commute. (b) $A_{\vec{k}}(z) = (-1)^n w_1 \cdots w_n \left(z^s - H_2^{\vec{k}} z^{s+1} + z^{>s+1}\right)$, where $s = \sum_{j=1}^n \frac{k_j - 1}{2}$ and Hamiltonian $H_2^{\vec{k}}$ equals

$$H_{2}^{\vec{k}} = \sum_{j=1}^{n} w_{j}^{-2} + \sum_{i=1}^{n-1} w_{i}^{-k_{i}-1} w_{i+1}^{-k_{i+1}-1} \cdot \frac{\mathsf{D}_{i}}{\mathsf{D}_{i+1}} + \sum_{\substack{k_{i+1}=\ldots=k_{j-1}=1\\1\leq i< j-1\leq n-1}}^{k_{i+1}=\ldots=k_{j-1}-1} w_{j}^{-k_{i}-1} \cdots w_{j}^{-k_{j}-1} \cdot \frac{\mathsf{D}_{i}}{\mathsf{D}_{j}}$$

(c) $H_2^{\vec{k}}$ is conjugate to $H_2^{\vec{k}'}$ with $\vec{k}' = (0, k_{n-1}, \dots, k_2, 0)$.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Modified quantum difference Toda systems (type A)

▶ Theorem (Finkelberg-T, '17): Fix $\vec{k} \in \{-1, 0, 1\}^n$. (a) The coefficients of z^{\bullet} in $A_{\vec{k}}(z)$ pairwise commute. (b) $A_{\vec{k}}(z) = (-1)^n w_1 \cdots w_n \left(z^s - H_2^{\vec{k}} z^{s+1} + z^{>s+1}\right)$, where $s = \sum_{j=1}^n \frac{k_j - 1}{2}$ and Hamiltonian $H_2^{\vec{k}}$ equals

$$H_{2}^{\vec{k}} = \sum_{j=1}^{n} w_{j}^{-2} + \sum_{i=1}^{n-1} w_{i}^{-k_{i}-1} w_{i+1}^{-k_{i+1}-1} \cdot \frac{\mathsf{D}_{i}}{\mathsf{D}_{i+1}} + \sum_{\substack{k_{i+1}=\ldots=k_{j-1}=1\\1\le i< j-1\le n-1}}^{k_{i+1}=\ldots=k_{j-1}=1} w_{i}^{-k_{i}-1} \cdots w_{j}^{-k_{j}-1} \cdot \frac{\mathsf{D}_{i}}{\mathsf{D}_{j}}$$

(c) $H_2^{\vec{k}}$ is conjugate to $H_2^{\vec{k}'}$ with $\vec{k}' = (0, k_{n-1}, \dots, k_2, 0)$. This produces 3^{n-2} quantum difference Toda systems.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Modified quantum difference Toda systems (type A)

Theorem (Finkelberg-T, '17): Fix k ∈ {-1,0,1}ⁿ.
 (a) The coefficients of z[•] in A_k(z) pairwise commute.
 (b) A_k(z) = (-1)ⁿw₁ ··· w_n (z^s - H₂^kz^{s+1} + z^{>s+1}), where s = ∑_{j=1}ⁿ k_j-1/2 and Hamiltonian H₂^k equals

$$H_{2}^{\vec{k}} = \sum_{j=1}^{n} w_{j}^{-2} + \sum_{i=1}^{n-1} w_{i}^{-k_{i}-1} w_{i+1}^{-k_{i+1}-1} \cdot \frac{\mathsf{D}_{i}}{\mathsf{D}_{i+1}} + \sum_{\substack{k_{i+1}=\ldots=k_{j-1}=1\\1\leq i< j-1\leq n-1}}^{k_{i+1}=\ldots=k_{j-1}-1} w_{i}^{-k_{i}-1} \cdots w_{j}^{-k_{j}-1} \cdot \frac{\mathsf{D}_{i}}{\mathsf{D}_{j}}$$

(c) H₂^k is conjugate to H₂^{k'} with k' = (0, k_{n-1},..., k₂, 0).
This produces 3ⁿ⁻² quantum difference Toda systems.
For k = 0, recover the above standard q-Toda.

▶ $\mathfrak{h} \subset \mathfrak{g}$ – a Cartan subalgebra of a semisimple Lie algebra.

・ 同 ト ・ ヨ ト ・ ヨ ト

3

- ▶ $\mathfrak{h} \subset \mathfrak{g}$ a Cartan subalgebra of a semisimple Lie algebra.
- The quantum Toda Hamiltonian corresponding to g is the following differential operator on h:

$$\mathcal{D}_2 = \frac{\Delta}{2} + \sum_{i=1}^{r} e^{-\alpha_i(h)}, \ \Delta = \text{Laplacian}, \{\alpha_i\}_{i=1}^{r} - \text{simple roots}$$

・ 同 ト ・ ヨ ト ・ ヨ ト ・

- ▶ $\mathfrak{h} \subset \mathfrak{g}$ a Cartan subalgebra of a semisimple Lie algebra.
- The quantum Toda Hamiltonian corresponding to g is the following differential operator on h:

$$\mathcal{D}_2 = \frac{\Delta}{2} + \sum_{i=1}^r e^{-\alpha_i(h)}, \ \Delta = \text{Laplacian}, \{\alpha_i\}_{i=1}^r - \text{simple roots}$$

▶ Theorem (Kazhdan-Kostant, '78): D₂ defines a quantum integrable system.

(日本) (日本) (日本)

- ▶ $\mathfrak{h} \subset \mathfrak{g}$ a Cartan subalgebra of a semisimple Lie algebra.
- The quantum Toda Hamiltonian corresponding to g is the following differential operator on h:

$$\mathcal{D}_2 = \frac{\Delta}{2} + \sum_{i=1}^r e^{-\alpha_i(h)}, \ \Delta = \text{Laplacian}, \{\alpha_i\}_{i=1}^r - \text{simple roots}$$

- Theorem (Kazhdan-Kostant, '78): D₂ defines a quantum integrable system.
- Following the ideas of Kazhdan-Kostant, a quantum difference Toda system of type g was proposed independently by Etingof and Sevostyanov in '99.

・ 同 ト ・ ヨ ト ・ ヨ ト

- ▶ $\mathfrak{h} \subset \mathfrak{g}$ a Cartan subalgebra of a semisimple Lie algebra.
- The quantum Toda Hamiltonian corresponding to g is the following differential operator on h:

$$\mathcal{D}_2 = \frac{\Delta}{2} + \sum_{i=1}^r e^{-\alpha_i(h)}, \ \Delta = \text{Laplacian}, \{\alpha_i\}_{i=1}^r - \text{simple roots}$$

- Theorem (Kazhdan-Kostant, '78): D₂ defines a quantum integrable system.
- Following the ideas of Kazhdan-Kostant, a quantum difference Toda system of type g was proposed independently by Etingof and Sevostyanov in '99.
- Theorem (Gonin-T, '18): There are exactly 3^{rk(g)-1} quantum difference Toda systems, generalizing the above one. In type A, they match those obtained via 3 Lax matrices.

• Question: What is so special about $L^{-1}(z), L^0(z), L^1(z)$?

▲□ ▶ ▲ □ ▶ ▲ □ ▶ …

크

• Question: What is so special about $L^{-1}(z), L^0(z), L^1(z)$?

The first approach to quantum groups (Faddeev's school):

 $R - \text{matrix} \stackrel{\text{RLL}}{\leadsto} \text{Quantum group}$

・ 同 ト ・ ヨ ト ・ ヨ ト

• Question: What is so special about $L^{-1}(z), L^0(z), L^1(z)$?

The first approach to quantum groups (Faddeev's school):

 $R - \text{matrix} \stackrel{\text{RLL}}{\leadsto} \text{Quantum group}$

Consider the trigonometric R-matrix

$$R(z,w) = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & \frac{z-w}{qz-q^{-1}w} & \frac{(q-q^{-1})z}{qz-q^{-1}w} & 0 \\ 0 & \frac{(q-q^{-1})w}{qz-q^{-1}w} & \frac{z-w}{qz-q^{-1}w} & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \in \text{End} \ (\mathbb{C}^2 \otimes \mathbb{C}^2)$$

・ 同 ト ・ ヨ ト ・ ヨ ト

• Question: What is so special about $L^{-1}(z), L^0(z), L^1(z)$?

The first approach to quantum groups (Faddeev's school):

 $R-\mathrm{matrix}\overset{\mathrm{RLL}}{\leadsto}\mathrm{Quantum\ group}$

Consider the trigonometric *R*-matrix

$$R(z,w) = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & \frac{z-w}{qz-q^{-1}w} & \frac{(q-q^{-1})z}{qz-q^{-1}w} & 0 \\ 0 & \frac{(q-q^{-1})w}{qz-q^{-1}w} & \frac{z-w}{qz-q^{-1}w} & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \in \text{End} \ (\mathbb{C}^2 \otimes \mathbb{C}^2)$$

• Proposition (Finkelberg-T, '17): (a) The Lax matrices $L^{k}(z)$ (k = -1, 0, 1) satisfy the so-called RLL relations

$$R(z, w)L_1^k(z)L_2^k(w) = L_2^k(w)L_1^k(z)R(z, w)$$

and also have quantum determinant $qdet(L^k(z)) = 1$. (b) Both relations also hold for $L_{\vec{k}}(z)$ with $\vec{k} \in \{-1, 0, 1\}^n$.

Lax matrices via shifted quantum affine \mathfrak{sl}_2

Question: How does one come up with these 3 Lax matrices?

- Question: How does one come up with these 3 Lax matrices?
- ▶ Due to RLL and *qdet* relations, L^k(z) (k = −1, 0, 1) may be viewed as homomorphisms from *analogues* of U_q(Lsl₂) to A^q₁.

- Question: How does one come up with these 3 Lax matrices?
- ▶ Due to RLL and *qdet* relations, L^k(z) (k = −1, 0, 1) may be viewed as homomorphisms from *analogues* of U_q(Lsl₂) to A^q₁.
- ▶ In the *new Drinfeld* realization of $U_q(L\mathfrak{sl}_2)$, one may shift Fourier coordinates of Cartan generators by $b^+, b^- \in \mathbb{Z}$, leading to *shifted quantum affine* \mathfrak{sl}_2 , denoted $U_{b^+,b^-}(L\mathfrak{sl}_2)$.

- Question: How does one come up with these 3 Lax matrices?
- ▶ Due to RLL and *qdet* relations, L^k(z) (k = −1, 0, 1) may be viewed as homomorphisms from *analogues* of U_q(Lsl₂) to A^q₁.
- ▶ In the *new Drinfeld* realization of $U_q(L\mathfrak{sl}_2)$, one may shift Fourier coordinates of Cartan generators by $b^+, b^- \in \mathbb{Z}$, leading to *shifted quantum affine* \mathfrak{sl}_2 , denoted $U_{b^+,b^-}(L\mathfrak{sl}_2)$.
- For a ∈ Z≥0 such that N := ¹/₂(a − b⁺ − b[−]) ∈ Z>0, there are distinguished homomorphisms

$$\Phi^a_{b^+,b^-} \colon U_{b^+,b^-}(L\mathfrak{sl}_2) \to A^q_N$$

・ 同 ト ・ 三 ト ・ 三 ト

- Question: How does one come up with these 3 Lax matrices?
- ▶ Due to RLL and *qdet* relations, L^k(z) (k = −1, 0, 1) may be viewed as homomorphisms from *analogues* of U_q(Lsl₂) to A^q₁.
- In the new Drinfeld realization of U_q(Lsl₂), one may shift Fourier coordinates of Cartan generators by b⁺, b⁻ ∈ Z, leading to shifted quantum affine sl₂, denoted U_{b⁺,b⁻}(Lsl₂).
- For a ∈ Z≥0 such that N := ¹/₂(a − b⁺ − b[−]) ∈ Z>0, there are distinguished homomorphisms

$$\Phi^{a}_{b^{+},b^{-}}\colon U_{b^{+},b^{-}}(L\mathfrak{sl}_{2})\to A^{q}_{N}$$

Theorem (Finkelberg-T, '17): (a) The above three analogues of U_q(Lsl₂) are isomorphic to the shifted quantum affine U_{0,-2}(Lsl₂), U_{-1,-1}(Lsl₂), U_{-2,0}(Lsl₂).
 (b) The above homomorphisms from these three analogues to A^q₁ coincide with Φ⁰_{0,-2}, Φ⁰_{-1,-1}, Φ⁰_{-2,0}.

• Question: Can we generalize this to $n \times n$ Lax matrices?

向下 イヨト イヨト

- Question: Can we generalize this to $n \times n$ Lax matrices?
- Related literature:
 - Physics: V. Bazhanov et. al., Z. Tsuboi, ...
 - Mathematics: Hernandez-Jimbo (cf. Felder-Zhang)

▲冊 ▶ ▲ 臣 ▶ ▲ 臣 ▶

- Question: Can we generalize this to $n \times n$ Lax matrices?
- Related literature:
 - Physics: V. Bazhanov et. al., Z. Tsuboi, ...
 - Mathematics: Hernandez-Jimbo (cf. Felder-Zhang)
- Our motivation comes from Frassek-Pestun (2018): Input: a pair of Young diagrams λ, μ of total size n and a collection of points {x_i}-one for each column of λ Output: a rational Lax matrix L_{λ,x,μ}(z) linear in z with qdet L_{λ,x,μ}(z) = ∏_i ∏^{λⁱ}_{k=1}(z - x_i - (k - 1)).

・ 同 ト ・ ヨ ト ・ ヨ ト

• Question: Can we generalize this to $n \times n$ Lax matrices?

Related literature:

- Physics: V. Bazhanov et. al., Z. Tsuboi, ...
- Mathematics: Hernandez-Jimbo (cf. Felder-Zhang)
- Our motivation comes from Frassek-Pestun (2018):
 Input: a pair of Young diagrams λ, μ of total size n and a collection of points {x_i}-one for each column of λ
 Output: a rational Lax matrix L_{λ,x,μ}(z) linear in z with qdet L_{λ,x,μ}(z) = ∏_i ∏^{λⁱ}_{k=1}(z x_i (k 1)).
- Their Questions:
 - Degeneration procedure (moving columns from λ to μ)
 - Trigonometric counterpart (depending on 3 Young diagrams)
 - Degeneration of trigonometric Lax to rational Lax

• □ ▶ • □ ▶ • □ ▶ • □ ▶ • □ ▶

크

Theorem (Frassek-Pestun-T, '19): (a) The shifted Yangian Y_μ(gl_n) admits an RLL realization iff μ-antidominant.
 (b) Homomorphisms of [BFN, '16] produce rational Lax matrices L_{λ,x;μ}(z) polynomial in z of degree ^{|λ|+|μ|}/_n for any pair of Young diagrams of length < n and n||λ| + |μ|.
 (c) L_{λ,x;μ}(z) is a normalized limit of L_{λ∪μ,x∪x';0}(z), x'₁ → ∞.

・ 同 ト ・ ヨ ト ・ ヨ ト …

- Theorem (Frassek-Pestun-T, '19): (a) The shifted Yangian Y_μ(gl_n) admits an RLL realization iff μ-antidominant.
 (b) Homomorphisms of [BFN, '16] produce rational Lax matrices L_{λ,x;μ}(z) polynomial in z of degree ^{|λ|+|μ|}/_n for any pair of Young diagrams of length < n and n||λ| + |μ|.
 (c) L_{λ,x;μ}(z) is a normalized limit of L_{λ∪μ,x∪x';∅}(z), x'₂ → ∞.
- Theorem (Frassek-Pestun-T, '19): (a) U_{μ+,μ-}(Lgl_n) admits an RLL realization iff μ⁺, μ⁻-antidominant.
 (b) Homomorphisms of [FT, '17] produce trigonometric Lax matrices L_{λ,x;μ+,μ-}(z) polynomial in z of degree |λ|+|μ+|+|μ⁻|/n for any λ, μ⁺, μ⁻ of length < n and n||λ| + |μ⁺| + |μ⁻|.
 (c) L_{λ,x;μ+,μ-}(z) is a normalized limit of L_{λ∪μ+∪μ-,x∪x';∅,∅}(z) as x'₂ → 0 or ∞.

Э

- Theorem (Frassek-Pestun-T, '19): (a) The shifted Yangian Y_μ(gl_n) admits an RLL realization iff μ-antidominant.
 (b) Homomorphisms of [BFN, '16] produce rational Lax matrices L_{λ,x;μ}(z) polynomial in z of degree ^{|λ|+|μ|}/_n for any pair of Young diagrams of length < n and n||λ| + |μ|.
 (c) L_{λ,x;μ}(z) is a normalized limit of L_{λ∪μ,x∪x';∅}(z), x'₂ → ∞.
- Theorem (Frassek-Pestun-T, '19): (a) U_{μ+,μ-}(Lgl_n) admits an RLL realization iff μ⁺, μ⁻-antidominant.
 (b) Homomorphisms of [FT, '17] produce trigonometric Lax matrices L_{λ,x;μ+,μ-}(z) polynomial in z of degree |λ|+|μ⁺|+|μ⁻|/n for any λ, μ⁺, μ⁻ of length < n and n||λ| + |μ⁺| + |μ⁻|.
 (c) L_{λ,x;μ+,μ-}(z) is a normalized limit of L_{λ∪μ+∪μ-,x∪x';0,0}(z) as x'₂ → 0 or ∞.

► Also $L_{\lambda,\underline{x};\mu^+,\mu^-}(z)$ degenerates to $L_{\lambda,\underline{x};\mu^+\cup\mu^-}(z)$.

► Homomorphisms $Y_{\mu_1+\mu_2}(L\mathfrak{gl}_n) \to Y_{\mu_1}(L\mathfrak{gl}_n) \otimes Y_{\mu_2}(L\mathfrak{gl}_n)$, recovering the main construction of [FKPRW, '16].

・ 同 ト ・ ヨ ト ・ ヨ ト ・

3

- ► Homomorphisms $Y_{\mu_1+\mu_2}(L\mathfrak{gl}_n) \to Y_{\mu_1}(L\mathfrak{gl}_n) \otimes Y_{\mu_2}(L\mathfrak{gl}_n)$, recovering the main construction of [FKPRW, '16].
- ► Recover coproduct homomorphisms of [Finkelberg-T, '17]: $U_{\mu_1^+ + \mu_2^+, \mu_1^- + \mu_2^-}(L\mathfrak{gl}_n) \rightarrow U_{\mu_1^+, \mu_1^-}(L\mathfrak{gl}_n) \otimes U_{\mu_2^+, \mu_2^-}(L\mathfrak{gl}_n).$

・ 同 ト ・ ヨ ト ・ ヨ ト

3

- ► Homomorphisms $Y_{\mu_1+\mu_2}(L\mathfrak{gl}_n) \to Y_{\mu_1}(L\mathfrak{gl}_n) \otimes Y_{\mu_2}(L\mathfrak{gl}_n)$, recovering the main construction of [FKPRW, '16].
- ► Recover coproduct homomorphisms of [Finkelberg-T, '17]: $U_{\mu_1^++\mu_2^+,\mu_1^-+\mu_2^-}(L\mathfrak{gl}_n) \rightarrow U_{\mu_1^+,\mu_1^-}(L\mathfrak{gl}_n) \otimes U_{\mu_2^+,\mu_2^-}(L\mathfrak{gl}_n).$
- ► The integral form of U_{µ⁺,µ⁻}(Ll_n) (i.e. C[q, q⁻¹]-subalgebra, commutative at q = 1) of [Finkelberg-T, '18] is immediate.

・ 同 ト ・ 三 ト ・ 三 ト

- ► Homomorphisms $Y_{\mu_1+\mu_2}(L\mathfrak{gl}_n) \to Y_{\mu_1}(L\mathfrak{gl}_n) \otimes Y_{\mu_2}(L\mathfrak{gl}_n)$, recovering the main construction of [FKPRW, '16].
- ► Recover coproduct homomorphisms of [Finkelberg-T, '17]: $U_{\mu_1^++\mu_2^+,\mu_1^-+\mu_2^-}(L\mathfrak{gl}_n) \rightarrow U_{\mu_1^+,\mu_1^-}(L\mathfrak{gl}_n) \otimes U_{\mu_2^+,\mu_2^-}(L\mathfrak{gl}_n).$
- ► The integral form of U_{µ⁺,µ⁻}(Ln) (i.e. C[q, q⁻¹]-subalgebra, commutative at q = 1) of [Finkelberg-T, '18] is immediate.
- New approach towards *truncated* shifted algebras.

・ 同 ト ・ ヨ ト ・ ヨ ト

- ► Homomorphisms $Y_{\mu_1+\mu_2}(L\mathfrak{gl}_n) \to Y_{\mu_1}(L\mathfrak{gl}_n) \otimes Y_{\mu_2}(L\mathfrak{gl}_n)$, recovering the main construction of [FKPRW, '16].
- ► Recover coproduct homomorphisms of [Finkelberg-T, '17]: $U_{\mu_1^++\mu_2^+,\mu_1^-+\mu_2^-}(L\mathfrak{gl}_n) \rightarrow U_{\mu_1^+,\mu_1^-}(L\mathfrak{gl}_n) \otimes U_{\mu_2^+,\mu_2^-}(L\mathfrak{gl}_n).$
- ► The integral form of U_{µ⁺,µ⁻}(Ln) (i.e. C[q, q⁻¹]-subalgebra, commutative at q = 1) of [Finkelberg-T, '18] is immediate.
- New approach towards *truncated* shifted algebras.
- ▶ Obtain Bethe subalgebras B(C) for $C \in Mat_{n \times n}(\mathbb{C})$.

・ 同 ト ・ ヨ ト ・ ヨ ト

- ► Homomorphisms $Y_{\mu_1+\mu_2}(L\mathfrak{gl}_n) \to Y_{\mu_1}(L\mathfrak{gl}_n) \otimes Y_{\mu_2}(L\mathfrak{gl}_n)$, recovering the main construction of [FKPRW, '16].
- ► Recover coproduct homomorphisms of [Finkelberg-T, '17]: $U_{\mu_1^++\mu_2^+,\mu_1^-+\mu_2^-}(L\mathfrak{gl}_n) \rightarrow U_{\mu_1^+,\mu_1^-}(L\mathfrak{gl}_n) \otimes U_{\mu_2^+,\mu_2^-}(L\mathfrak{gl}_n).$
- ► The integral form of U_{µ⁺,µ⁻}(Ln) (i.e. C[q, q⁻¹]-subalgebra, commutative at q = 1) of [Finkelberg-T, '18] is immediate.
- New approach towards *truncated* shifted algebras.
- ▶ Obtain Bethe subalgebras B(C) for $C \in Mat_{n \times n}(\mathbb{C})$.
- By the construction of [BFN, '16] and [Finkelberg-T, '17], actually obtain Bethe subalgebras in quantized (K-theoretic) Coulomb branches of type A quiver gauge theories

イロト イポト イヨト イヨト

This talk is based on the recent joint works with Michael Finkelberg, Roman Gonin, Rouven Frassek, Vasily Pestun:

[Finkelberg-T, '17] *Multiplicative slices, relativistic Toda and shifted quantum affine algebras*, Progress in Mathematics (2019), 172pp, DOI:10.1007/978-3-030-23531-4.

[Finkelberg-T, '18] Shifted quantum affine algebras: integral forms in type A, Arnold Mathematical Journal (2019), 87pp, DOI:10.1007/s40598-019-00118-7.

[Gonin-T, '18] On Sevostyanov's construction of quantum difference Toda lattices, International Mathematics Research Notices (2019), 61pp, DOI:10.1093/imrn/rnz083.

[Frassek-Pestun-T, '19] Rational and trigonometric Lax matrices via antidominantly shifted Yangians and quantum affine algebras, in preparation.

イロト イヨト イヨト

Thank you!

Sasha Tsymbaliuk Integrable systems via shifted quantum groups

・ロト ・日ト ・ヨト ・ヨト

Ð,