Integrable systems via shifted quantum groups

Sasha Tsymbaliuk

Yale

08/16/2019
Representation Theory and Integrable Systems
In honor of Vitaly Tarasov \& Alexander Varchenko

Key Objectives

- Introduce 3^{n-2} modified quantum difference $\mathfrak{s l}_{n}$ Toda systems (joint with M. Finkelberg, 2017)

Key Objectives

- Introduce 3^{n-2} modified quantum difference $\mathfrak{s l}_{n}$ Toda systems (joint with M. Finkelberg, 2017)
- Generalization 1 (answering P. Etingof's question): construct $3^{\mathrm{rk}(\mathfrak{g})-1}$ modified quantum difference Toda systems of type \mathfrak{g} (joint with R. Gonin, 2018)

Key Objectives

- Introduce 3^{n-2} modified quantum difference $\mathfrak{s l}_{n}$ Toda systems (joint with M. Finkelberg, 2017)
- Generalization 1 (answering P. Etingof's question): construct $3^{\mathrm{rk}(\mathfrak{g})-1}$ modified quantum difference Toda systems of type \mathfrak{g} (joint with R. Gonin, 2018)
- Generalization 2 (answering B. Feigin's question):
- construct higher rank rational/trigonometric Lax matrices from antidominantly shifted Yangians/q.affine algebras
- obtain Bethe subalgebras in quantized Coulomb branches (joint with R. Frassek and V. Pestun, 2019)

Classical and Quantum Toda systems (type A)

- Toda lattice is the hamiltonian system with phase space $\mathbb{R}^{2 n}$ (with its usual symplectic structure) and Hamiltonian

$$
H=\frac{1}{2} \sum_{i=1}^{n} p_{i}^{2}+\sum_{i=1}^{n-1} e^{q_{i+1}-q_{i}}
$$

Classical and Quantum Toda systems (type A)

- Toda lattice is the hamiltonian system with phase space $\mathbb{R}^{2 n}$ (with its usual symplectic structure) and Hamiltonian

$$
H=\frac{1}{2} \sum_{i=1}^{n} p_{i}^{2}+\sum_{i=1}^{n-1} e^{q_{i+1}-q_{i}}
$$

- Theorem (Toda, '67): Toda lattice is completely integrable.

Classical and Quantum Toda systems (type A)

- Toda lattice is the hamiltonian system with phase space $\mathbb{R}^{2 n}$ (with its usual symplectic structure) and Hamiltonian

$$
H=\frac{1}{2} \sum_{i=1}^{n} p_{i}^{2}+\sum_{i=1}^{n-1} e^{q_{i+1}-q_{i}}
$$

- Theorem (Toda, '67): Toda lattice is completely integrable.
- This can be quantized: consider quantum Toda Hamiltonian

$$
\mathcal{D}_{2}=\frac{1}{2} \sum_{i=1}^{n} \partial_{x_{i}}^{2}+\sum_{i=1}^{n-1} e^{x_{i+1}-x_{i}}
$$

Classical and Quantum Toda systems (type A)

- Toda lattice is the hamiltonian system with phase space $\mathbb{R}^{2 n}$ (with its usual symplectic structure) and Hamiltonian

$$
H=\frac{1}{2} \sum_{i=1}^{n} p_{i}^{2}+\sum_{i=1}^{n-1} e^{q_{i+1}-q_{i}}
$$

- Theorem (Toda, '67): Toda lattice is completely integrable.
- This can be quantized: consider quantum Toda Hamiltonian

$$
\mathcal{D}_{2}=\frac{1}{2} \sum_{i=1}^{n} \partial_{x_{i}}^{2}+\sum_{i=1}^{n-1} e^{x_{i+1}-x_{i}}
$$

- Theorem (Toda): \mathcal{D}_{2} defines a quantum integrable system:
there exist differential operators $\left\{\mathcal{D}_{i}\right\}_{i=1}^{n}$ such that

$$
\left[\mathcal{D}_{i}, \mathcal{D}_{j}\right]=0 \text { and }\left\{\operatorname{symbol}\left(\mathcal{D}_{i}\right)\right\}_{i=1}^{n} \text { generate } \mathbb{C}\left[\partial_{x_{1}}, \ldots, \partial_{x_{n}}\right]^{\Sigma_{n}}
$$

Lax realization of Toda systems (type A)

- Consider the local Lax matrix

$$
L_{i}(z)=\left(\begin{array}{cc}
z-p_{i} & e^{q_{i}} \\
-e^{-q_{i}} & 0
\end{array}\right), 1 \leq i \leq n
$$

Lax realization of Toda systems (type A)

- Consider the local Lax matrix

$$
L_{i}(z)=\left(\begin{array}{cc}
z-p_{i} & e^{q_{i}} \\
-e^{-q_{i}} & 0
\end{array}\right), 1 \leq i \leq n
$$

- Consider the complete monodromy matrix

$$
\mathrm{L}(z)=L_{n}(z) \cdots L_{1}(z)=\left(\begin{array}{cc}
A(z) & B(z) \\
C(z) & D(z)
\end{array}\right)
$$

Lax realization of Toda systems (type A)

- Consider the local Lax matrix

$$
L_{i}(z)=\left(\begin{array}{cc}
z-p_{i} & e^{q_{i}} \\
-e^{-q_{i}} & 0
\end{array}\right), 1 \leq i \leq n
$$

- Consider the complete monodromy matrix

$$
\mathrm{L}(z)=L_{n}(z) \cdots L_{1}(z)=\left(\begin{array}{cc}
A(z) & B(z) \\
C(z) & D(z)
\end{array}\right)
$$

- Theorem (Faddeev-Takhtajan, '79): The coefficients of z^{\bullet} in $A(z)$ are the Toda Hamiltonians.

Lax realization of Toda systems (type A)

- Consider the local Lax matrix

$$
L_{i}(z)=\left(\begin{array}{cc}
z-p_{i} & e^{q_{i}} \\
-e^{-q_{i}} & 0
\end{array}\right), 1 \leq i \leq n
$$

- Consider the complete monodromy matrix

$$
\mathrm{L}(z)=L_{n}(z) \cdots L_{1}(z)=\left(\begin{array}{cc}
A(z) & B(z) \\
C(z) & D(z)
\end{array}\right)
$$

- Theorem (Faddeev-Takhtajan, '79): The coefficients of z^{\bullet} in $A(z)$ are the Toda Hamiltonians.
- Same for quantum Toda system with local Lax matrices

$$
L_{i}(z)=\left(\begin{array}{cc}
z+\partial_{x_{i}} & e^{x_{i}} \\
-e^{-x_{i}} & 0
\end{array}\right), 1 \leq i \leq n
$$

Quantum difference Toda system (type A)

- Further generalization: Ruijsenaars, Givental, Etingof, Sevostyanov, ...

Quantum difference Toda system (type A)

- Further generalization: Ruijsenaars, Givental, Etingof, Sevostyanov, ...
- The quantum difference Toda Hamiltonian

$$
\mathcal{M}_{2}=\sum_{i=1}^{n} T_{i}^{2}+\left(q-q^{-1}\right)^{2} \sum_{i=1}^{n-1} e^{x_{i+1}-x_{i}} T_{i} T_{i+1}
$$

where $q=e^{\hbar}$ and

$$
T_{i} f\left(x_{1}, \ldots, x_{n}\right)=f\left(x_{1}, \ldots, x_{i}+\hbar, \ldots, x_{n}\right)
$$

Quantum difference Toda system (type A)

- Further generalization: Ruijsenaars, Givental, Etingof, Sevostyanov, ...
- The quantum difference Toda Hamiltonian

$$
\mathcal{M}_{2}=\sum_{i=1}^{n} T_{i}^{2}+\left(q-q^{-1}\right)^{2} \sum_{i=1}^{n-1} e^{x_{i+1}-x_{i}} T_{i} T_{i+1}
$$

where $q=e^{\hbar}$ and

$$
T_{i} f\left(x_{1}, \ldots, x_{n}\right)=f\left(x_{1}, \ldots, x_{i}+\hbar, \ldots, x_{n}\right)
$$

- Theorem (Ruijsenaars, '90): There exists a family of difference operators $\left\{\mathcal{M}_{i}\right\}_{i=1}^{n}$ which pairwise commute and are algebraically independent.

Quantum difference Toda system (type A)

- Further generalization: Ruijsenaars, Givental, Etingof, Sevostyanov, ...
- The quantum difference Toda Hamiltonian

$$
\mathcal{M}_{2}=\sum_{i=1}^{n} T_{i}^{2}+\left(q-q^{-1}\right)^{2} \sum_{i=1}^{n-1} e^{x_{i+1}-x_{i}} T_{i} T_{i+1}
$$

where $q=e^{\hbar}$ and

$$
T_{i} f\left(x_{1}, \ldots, x_{n}\right)=f\left(x_{1}, \ldots, x_{i}+\hbar, \ldots, x_{n}\right)
$$

- Theorem (Ruijsenaars, '90): There exists a family of difference operators $\left\{\mathcal{M}_{i}\right\}_{i=1}^{n}$ which pairwise commute and are algebraically independent.
- As $\hbar \rightarrow 0$, recover quantum Toda system.

Lax realization of quantum difference Toda (type A)

- Algebra $A_{n}^{q}=\left\langle\mathrm{w}_{i}^{ \pm 1}, \mathrm{D}_{i}^{ \pm 1}\right\rangle_{i=1}^{n}$ subject to $\mathrm{D}_{i} \mathrm{w}_{j}=q^{\delta_{i j}} \mathrm{w}_{j} \mathrm{D}_{i}$.

Lax realization of quantum difference Toda (type A)

- Algebra $A_{n}^{q}=\left\langle\mathrm{w}_{i}^{ \pm 1}, \mathrm{D}_{i}^{ \pm 1}\right\rangle_{i=1}^{n}$ subject to $\mathrm{D}_{i} \mathrm{w}_{j}=q^{\delta_{i j}} \mathrm{w}_{j} \mathrm{D}_{i}$.
- Identifying $\mathrm{w}_{i} \leftrightarrow T_{i}^{-1}, \mathrm{D}_{i} \leftrightarrow e^{-x_{i}}$, view \mathcal{M}_{i} as elements of A_{n}^{q}.

Lax realization of quantum difference Toda (type A)

- Algebra $A_{n}^{q}=\left\langle\mathrm{w}_{i}^{ \pm 1}, \mathrm{D}_{i}^{ \pm 1}\right\rangle_{i=1}^{n}$ subject to $\mathrm{D}_{i} \mathrm{w}_{j}=q^{\delta_{i j}} \mathrm{w}_{j} \mathrm{D}_{i}$.
- Identifying $\mathrm{w}_{i} \leftrightarrow T_{i}^{-1}, \mathrm{D}_{i} \leftrightarrow e^{-x_{i}}$, view \mathcal{M}_{i} as elements of A_{n}^{q}.
- Consider the local Lax matrix

$$
L_{i}^{0}(z)=\left(\begin{array}{cc}
\mathrm{w}_{i}^{-1} z^{1 / 2}-\mathrm{w}_{i} z^{-1 / 2} & \mathrm{D}_{i}^{-1} z^{1 / 2} \\
-\mathrm{D}_{i} z^{-1 / 2} & 0
\end{array}\right), 1 \leq i \leq n
$$

Lax realization of quantum difference Toda (type A)

- Algebra $A_{n}^{q}=\left\langle\mathrm{w}_{i}^{ \pm 1}, \mathrm{D}_{i}^{ \pm 1}\right\rangle_{i=1}^{n}$ subject to $\mathrm{D}_{i} \mathrm{w}_{j}=q^{\delta_{i j}} \mathrm{w}_{j} \mathrm{D}_{i}$.
- Identifying $\mathrm{w}_{i} \leftrightarrow T_{i}^{-1}, \mathrm{D}_{i} \leftrightarrow e^{-x_{i}}$, view \mathcal{M}_{i} as elements of A_{n}^{q}.
- Consider the local Lax matrix

$$
L_{i}^{0}(z)=\left(\begin{array}{cc}
\mathrm{w}_{i}^{-1} z^{1 / 2}-\mathrm{w}_{i} z^{-1 / 2} & \mathrm{D}_{i}^{-1} z^{1 / 2} \\
-\mathrm{D}_{i} z^{-1 / 2} & 0
\end{array}\right), 1 \leq i \leq n
$$

- Consider the complete monodromy matrix

$$
\mathrm{L}(z)=L_{n}^{0}(z) \cdots L_{1}^{0}(z)=\left(\begin{array}{cc}
A(z) & B(z) \\
C(z) & D(z)
\end{array}\right)
$$

Lax realization of quantum difference Toda (type A)

- Algebra $A_{n}^{q}=\left\langle\mathrm{w}_{i}^{ \pm 1}, \mathrm{D}_{i}^{ \pm 1}\right\rangle_{i=1}^{n}$ subject to $\mathrm{D}_{i} \mathrm{w}_{j}=q^{\delta_{i j}} \mathrm{w}_{j} \mathrm{D}_{i}$.
- Identifying $\mathrm{w}_{i} \leftrightarrow T_{i}^{-1}, \mathrm{D}_{i} \leftrightarrow e^{-x_{i}}$, view \mathcal{M}_{i} as elements of A_{n}^{q}.
- Consider the local Lax matrix

$$
L_{i}^{0}(z)=\left(\begin{array}{cc}
\mathrm{w}_{i}^{-1} z^{1 / 2}-\mathrm{w}_{i} z^{-1 / 2} & \mathrm{D}_{i}^{-1} z^{1 / 2} \\
-\mathrm{D}_{i} z^{-1 / 2} & 0
\end{array}\right), 1 \leq i \leq n
$$

- Consider the complete monodromy matrix

$$
\mathrm{L}(z)=L_{n}^{0}(z) \cdots L_{1}^{0}(z)=\left(\begin{array}{cc}
A(z) & B(z) \\
C(z) & D(z)
\end{array}\right)
$$

- Theorem (Kuznetsov-Tsyganov, '96): The coefficients of z^{\bullet} in $A(z)$ are the quantum difference Toda Hamiltonians.

Three Lax matrices

- In addition to $L_{i}^{0}(z)$, consider

$$
\begin{aligned}
L_{i}^{-1}(z) & =\left(\begin{array}{cc}
\mathrm{w}_{i}^{-1}-\mathrm{w}_{i} z^{-1} & \mathrm{w}_{i} \mathrm{D}_{i}^{-1} \\
-\mathrm{w}_{i} \mathrm{D}_{i} z^{-1} & \mathrm{w}_{i}
\end{array}\right) \\
L_{i}^{1}(z) & =\left(\begin{array}{cc}
\mathrm{w}_{i}^{-1} z-\mathrm{w}_{i} & \mathrm{w}_{i}^{-1} \mathrm{D}_{i}^{-1} z \\
-\mathrm{w}_{i}^{-1} \mathrm{D}_{i} & -\mathrm{w}_{i}^{-1}
\end{array}\right)
\end{aligned}
$$

Three Lax matrices

- In addition to $L_{i}^{0}(z)$, consider

$$
\begin{aligned}
& L_{i}^{-1}(z)=\left(\begin{array}{cc}
\mathrm{w}_{i}^{-1}-\mathrm{w}_{i} z^{-1} & \mathrm{w}_{i} \mathrm{D}_{i}^{-1} \\
-\mathrm{w}_{i} \mathrm{D}_{i} z^{-1} & \mathrm{w}_{i}
\end{array}\right) \\
& L_{i}^{1}(z)=\left(\begin{array}{cc}
\mathrm{w}_{i}^{-1} z-\mathrm{w}_{i} & \mathrm{w}_{i}^{-1} \mathrm{D}_{i}^{-1} z \\
-\mathrm{w}_{i}^{-1} \mathrm{D}_{i} & -\mathrm{w}_{i}^{-1}
\end{array}\right)
\end{aligned}
$$

- For

$$
\vec{k}=\left(k_{n}, \ldots, k_{1}\right) \in\{-1,0,1\}^{n}
$$

consider the mixed complete monodromy matrix

$$
\mathrm{L}_{\vec{k}}(z):=L_{n}^{k_{n}}(z) \cdots L_{1}^{k_{1}}(z)=\left(\begin{array}{cc}
A_{\vec{k}}(z) & B_{\vec{k}}(z) \\
C_{\vec{k}}(z) & D_{\vec{k}}(z)
\end{array}\right)
$$

Modified quantum difference Toda systems (type A)

- Theorem (Finkelberg-T, '17): Fix $\vec{k} \in\{-1,0,1\}^{n}$.
(a) The coefficients of z^{\bullet} in $A_{\vec{k}}(z)$ pairwise commute.
(b) $A_{\vec{k}}(z)=(-1)^{n} \mathrm{w}_{1} \cdots \mathrm{w}_{n}\left(z^{s}-\mathrm{H}_{2}^{\vec{k}} z^{s+1}+z^{>s+1}\right)$, where $s=\sum_{j=1}^{n} \frac{k_{j}-1}{2}$ and Hamiltonian $\mathrm{H}_{2}^{\vec{k}}$ equals

$$
\begin{aligned}
\mathrm{H}_{2}^{\vec{k}}=\sum_{j=1}^{n} \mathrm{w}_{j}^{-2}+\sum_{i=1}^{n-1} \mathrm{w}_{i}^{-k_{i}-1} \mathrm{w}_{i+1}^{-k_{i+1}-1} \cdot \frac{\mathrm{D}_{i}}{\mathrm{D}_{i+1}}+ \\
k_{i+1}=\ldots=k_{j-1}=1 \\
\sum_{1 \leq i<j-1 \leq n-1} \mathrm{w}_{i}^{-k_{i}-1} \cdots \mathrm{w}_{j}^{-k_{j}-1} \cdot \frac{\mathrm{D}_{i}}{\mathrm{D}_{j}}
\end{aligned}
$$

(c) $\mathrm{H}_{2}^{\vec{k}}$ is conjugate to $\mathrm{H}_{2}^{\overrightarrow{k^{\prime}}}$ with $\vec{k}^{\prime}=\left(0, k_{n-1}, \ldots, k_{2}, 0\right)$.

Modified quantum difference Toda systems (type A)

- Theorem (Finkelberg-T, '17): Fix $\vec{k} \in\{-1,0,1\}^{n}$.
(a) The coefficients of z^{\bullet} in $A_{\vec{k}}(z)$ pairwise commute.
(b) $A_{\vec{k}}(z)=(-1)^{n} \mathrm{w}_{1} \cdots \mathrm{w}_{n}\left(z^{s}-\mathrm{H}_{2}^{\vec{k}} z^{s+1}+z^{>s+1}\right)$, where $s=\sum_{j=1}^{n} \frac{k_{j}-1}{2}$ and Hamiltonian $\mathrm{H}_{2}^{\vec{k}}$ equals

$$
\begin{aligned}
\mathrm{H}_{2}^{\vec{k}}=\sum_{j=1}^{n} \mathrm{w}_{j}^{-2}+\sum_{i=1}^{n-1} \mathrm{w}_{i}^{-k_{i}-1} \mathrm{w}_{i+1}^{-k_{i+1}-1} \cdot \frac{\mathrm{D}_{i}}{\mathrm{D}_{i+1}}+ \\
k_{i+1}=\ldots=k_{j-1}=1 \\
\sum_{1 \leq i<j-1 \leq n-1} \mathrm{w}_{i}^{-k_{i}-1} \cdots \mathrm{w}_{j}^{-k_{j}-1} \cdot \frac{\mathrm{D}_{i}}{\mathrm{D}_{j}}
\end{aligned}
$$

(c) $\mathrm{H}_{2}^{\vec{k}}$ is conjugate to $\mathrm{H}_{2}^{\vec{k}^{\prime}}$ with $\vec{k}^{\prime}=\left(0, k_{n-1}, \ldots, k_{2}, 0\right)$.

- This produces 3^{n-2} quantum difference Toda systems.

Modified quantum difference Toda systems (type A)

- Theorem (Finkelberg-T, '17): Fix $\vec{k} \in\{-1,0,1\}^{n}$.
(a) The coefficients of z^{\bullet} in $A_{\vec{k}}(z)$ pairwise commute.
(b) $A_{\vec{k}}(z)=(-1)^{n} \mathrm{w}_{1} \cdots \mathrm{w}_{n}\left(z^{s}-\mathrm{H}_{2}^{\vec{k}} z^{s+1}+z^{>s+1}\right)$, where $s=\sum_{j=1}^{n} \frac{k_{j}-1}{2}$ and Hamiltonian $\mathrm{H}_{2}^{\vec{k}}$ equals

$$
\begin{aligned}
\mathrm{H}_{2}^{\vec{k}}=\sum_{j=1}^{n} \mathrm{w}_{j}^{-2}+\sum_{i=1}^{n-1} \mathrm{w}_{i}^{-k_{i}-1} \mathrm{w}_{i+1}^{-k_{i+1}-1} \cdot \frac{\mathrm{D}_{i}}{\mathrm{D}_{i+1}}+ \\
k_{i+1}=\ldots=k_{j-1}=1 \\
\sum_{1 \leq i<j-1 \leq n-1} \mathrm{w}_{i}^{-k_{i}-1} \cdots \mathrm{w}_{j}^{-k_{j}-1} \cdot \frac{\mathrm{D}_{i}}{\mathrm{D}_{j}}
\end{aligned}
$$

(c) $\mathrm{H}_{2}^{\vec{k}}$ is conjugate to $\mathrm{H}_{2}^{\vec{k}^{\prime}}$ with $\vec{k}^{\prime}=\left(0, k_{n-1}, \ldots, k_{2}, 0\right)$.

- This produces 3^{n-2} quantum difference Toda systems.
- For $\vec{k}=\overrightarrow{0}$, recover the above standard q-Toda.

Quantum (difference) Toda systems (general type)

- $\mathfrak{h} \subset \mathfrak{g}$ - a Cartan subalgebra of a semisimple Lie algebra.

Quantum (difference) Toda systems (general type)

- $\mathfrak{h} \subset \mathfrak{g}$ - a Cartan subalgebra of a semisimple Lie algebra.
- The quantum Toda Hamiltonian corresponding to \mathfrak{g} is the following differential operator on \mathfrak{h} :
$\mathcal{D}_{2}=\frac{\Delta}{2}+\sum_{i=1}^{r} e^{-\alpha_{i}(h)}, \Delta=$ Laplacian, $\left\{\alpha_{i}\right\}_{i=1}^{r}-$ simple roots

Quantum (difference) Toda systems (general type)

- $\mathfrak{h} \subset \mathfrak{g}$ - a Cartan subalgebra of a semisimple Lie algebra.
- The quantum Toda Hamiltonian corresponding to \mathfrak{g} is the following differential operator on \mathfrak{h} :
$\mathcal{D}_{2}=\frac{\Delta}{2}+\sum_{i=1}^{r} e^{-\alpha_{i}(h)}, \Delta=$ Laplacian, $\left\{\alpha_{i}\right\}_{i=1}^{r}-$ simple roots
- Theorem (Kazhdan-Kostant, '78): \mathcal{D}_{2} defines a quantum integrable system.

Quantum (difference) Toda systems (general type)

- $\mathfrak{h} \subset \mathfrak{g}$ - a Cartan subalgebra of a semisimple Lie algebra.
- The quantum Toda Hamiltonian corresponding to \mathfrak{g} is the following differential operator on \mathfrak{h} :
$\mathcal{D}_{2}=\frac{\Delta}{2}+\sum_{i=1}^{r} e^{-\alpha_{i}(h)}, \Delta=$ Laplacian, $\left\{\alpha_{i}\right\}_{i=1}^{r}-$ simple roots
- Theorem (Kazhdan-Kostant, '78): \mathcal{D}_{2} defines a quantum integrable system.
- Following the ideas of Kazhdan-Kostant, a quantum difference Toda system of type \mathfrak{g} was proposed independently by Etingof and Sevostyanov in '99.

Quantum (difference) Toda systems (general type)

- $\mathfrak{h} \subset \mathfrak{g}$ - a Cartan subalgebra of a semisimple Lie algebra.
- The quantum Toda Hamiltonian corresponding to \mathfrak{g} is the following differential operator on \mathfrak{h} :
$\mathcal{D}_{2}=\frac{\Delta}{2}+\sum_{i=1}^{r} e^{-\alpha_{i}(h)}, \Delta=$ Laplacian, $\left\{\alpha_{i}\right\}_{i=1}^{r}-$ simple roots
- Theorem (Kazhdan-Kostant, '78): \mathcal{D}_{2} defines a quantum integrable system.
- Following the ideas of Kazhdan-Kostant, a quantum difference Toda system of type \mathfrak{g} was proposed independently by Etingof and Sevostyanov in '99.
- Theorem (Gonin-T, '18): There are exactly $3^{\text {rk(g)-1 }}$ quantum difference Toda systems, generalizing the above one. In type A, they match those obtained via 3 Lax matrices.

RLL relations for the three Lax matrices

- Question: What is so special about $L^{-1}(z), L^{0}(z), L^{1}(z)$?

RLL relations for the three Lax matrices

- Question: What is so special about $L^{-1}(z), L^{0}(z), L^{1}(z)$?
- The first approach to quantum groups (Faddeev's school):

$$
R \text { - matrix } \stackrel{\text { RLL }}{\rightsquigarrow} \text { Quantum group }
$$

RLL relations for the three Lax matrices

- Question: What is so special about $L^{-1}(z), L^{0}(z), L^{1}(z)$?
- The first approach to quantum groups (Faddeev's school):

$$
R \text { - matrix } \stackrel{\text { RLL }}{\rightsquigarrow} \text { Quantum group }
$$

- Consider the trigonometric R-matrix

$$
R(z, w)=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & \frac{z-w}{q z-q-1 w} & \frac{\left(q-q^{-1}\right) z}{q z-q^{-1} w} & 0 \\
0 & \frac{\left(q-q^{-1}\right) w}{q z-q^{-1} w} & \frac{z-w}{q z-q^{-1} w} & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \in \text { End }\left(\mathbb{C}^{2} \otimes \mathbb{C}^{2}\right)
$$

RLL relations for the three Lax matrices

- Question: What is so special about $L^{-1}(z), L^{0}(z), L^{1}(z)$?
- The first approach to quantum groups (Faddeev's school):

$$
R-\text { matrix } \stackrel{\text { RLL }}{\rightsquigarrow} \text { Quantum group }
$$

- Consider the trigonometric R-matrix

$$
R(z, w)=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & \frac{z-w}{q z-q-1} w & \frac{\left(q-q^{-1}\right) z}{q z-q^{-1} w} & 0 \\
0 & \frac{\left(q-q^{-1}\right) w}{q z-q^{-1} w} & \frac{z-w}{q z-q^{-1} w} & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \in \text { End }\left(\mathbb{C}^{2} \otimes \mathbb{C}^{2}\right)
$$

- Proposition (Finkelberg-T, '17): (a) The Lax matrices $L^{k}(z)(k=-1,0,1)$ satisfy the so-called RLL relations

$$
R(z, w) L_{1}^{k}(z) L_{2}^{k}(w)=L_{2}^{k}(w) L_{1}^{k}(z) R(z, w)
$$

and also have quantum determinant $\operatorname{qdet}\left(L_{\vec{k}}^{k}(z)\right)=1$. (b) Both relations also hold for $\mathrm{L}_{\vec{k}}(z)$ with $\vec{k} \in\{-1,0,1\}^{n}$.

Lax matrices via shifted quantum affine $\mathfrak{s l}_{2}$

- Question: How does one come up with these 3 Lax matrices?

Lax matrices via shifted quantum affine $\mathfrak{s l}_{2}$

- Question: How does one come up with these 3 Lax matrices?
- Due to RLL and qdet relations, $L^{k}(z)(k=-1,0,1)$ may be viewed as homomorphisms from analogues of $U_{q}\left(\operatorname{Lsl}_{2}\right)$ to A_{1}^{q}.

Lax matrices via shifted quantum affine $\mathfrak{s l}_{2}$

- Question: How does one come up with these 3 Lax matrices?
- Due to RLL and qdet relations, $L^{k}(z)(k=-1,0,1)$ may be viewed as homomorphisms from analogues of $U_{q}\left(L \mathfrak{s l}_{2}\right)$ to A_{1}^{q}.
- In the new Drinfeld realization of $\left.U_{q}\left(L_{5 l}\right)_{2}\right)$, one may shift Fourier coordinates of Cartan generators by $b^{+}, b^{-} \in \mathbb{Z}$, leading to shifted quantum affine $\mathfrak{s l}_{2}$, denoted $U_{b^{+}, b^{-}}\left(L \mathfrak{s l}_{2}\right)$.

Lax matrices via shifted quantum affine $\mathfrak{s l}_{2}$

- Question: How does one come up with these 3 Lax matrices?
- Due to RLL and qdet relations, $L^{k}(z)(k=-1,0,1)$ may be

- In the new Drinfeld realization of $U_{q}\left(L \mathfrak{s l}_{2}\right)$, one may shift Fourier coordinates of Cartan generators by $b^{+}, b^{-} \in \mathbb{Z}$, leading to shifted quantum affine $\mathfrak{s l}_{2}$, denoted $U_{b^{+}, b^{-}}\left(L \mathfrak{s l}_{2}\right)$.
- For $a \in \mathbb{Z}_{\geq 0}$ such that $N:=\frac{1}{2}\left(a-b^{+}-b^{-}\right) \in \mathbb{Z}_{>0}$, there are distinguished homomorphisms

$$
\Phi_{b^{+}, b^{-}}^{a}: U_{b^{+}, b^{-}}\left(L \operatorname{sl}_{2}\right) \rightarrow A_{N}^{q}
$$

Lax matrices via shifted quantum affine $\mathfrak{s l}_{2}$

- Question: How does one come up with these 3 Lax matrices?
- Due to RLL and qdet relations, $L^{k}(z)(k=-1,0,1)$ may be viewed as homomorphisms from analogues of $U_{q}\left(L \mathfrak{s l}_{2}\right)$ to A_{1}^{q}.
- In the new Drinfeld realization of $U_{q}\left(L_{\mathfrak{s l}_{2}}\right)$, one may shift Fourier coordinates of Cartan generators by $b^{+}, b^{-} \in \mathbb{Z}$, leading to shifted quantum affine $\mathfrak{s l}_{2}$, denoted $U_{b^{+}, b^{-}}\left(L_{\mathfrak{s l}_{2}}\right)$.
- For $a \in \mathbb{Z}_{\geq 0}$ such that $N:=\frac{1}{2}\left(a-b^{+}-b^{-}\right) \in \mathbb{Z}_{>0}$, there are distinguished homomorphisms

$$
\Phi_{b^{+}, b^{-}}^{a}: U_{b^{+}, b^{-}}\left(L \operatorname{sl}_{2}\right) \rightarrow A_{N}^{q}
$$

- Theorem (Finkelberg-T, '17): (a) The above three analogues of $U_{q}\left(L \mathfrak{s l}_{2}\right)$ are isomorphic to the shifted quantum affine $U_{0,-2}\left(L_{\mathfrak{S l}_{2}}\right), U_{-1,-1}\left(L_{\mathfrak{s l}_{2}}\right), U_{-2,0}\left(L_{\mathfrak{s l}_{2}}\right)$.
(b) The above homomorphisms from these three analogues to A_{1}^{q} coincide with $\Phi_{0,-2}^{0}, \Phi_{-1,-1}^{0}, \Phi_{-2,0}^{0}$.

Higher rank generalization

- Question: Can we generalize this to $n \times n$ Lax matrices?

Higher rank generalization

- Question: Can we generalize this to $n \times n$ Lax matrices?
- Related literature:
- Physics: V. Bazhanov et. al., Z. Tsuboi, ...
- Mathematics: Hernandez-Jimbo (cf. Felder-Zhang)

Higher rank generalization

- Question: Can we generalize this to $n \times n$ Lax matrices?
- Related literature:
- Physics: V. Bazhanov et. al., Z. Tsuboi, ...
- Mathematics: Hernandez-Jimbo (cf. Felder-Zhang)
- Our motivation comes from Frassek-Pestun (2018): Input: a pair of Young diagrams $\boldsymbol{\lambda}, \boldsymbol{\mu}$ of total size n and a collection of points $\left\{x_{i}\right\}$-one for each column of $\boldsymbol{\lambda}$ Output: a rational Lax matrix $L_{\lambda, \chi, \mu}(z)$ linear in z with $q \operatorname{det} L_{\lambda, \underline{x}, \boldsymbol{\mu}}(z)=\prod_{i} \prod_{k=1}^{\lambda_{i}^{t}}\left(z-x_{i}-(k-1)\right)$.

Higher rank generalization

- Question: Can we generalize this to $n \times n$ Lax matrices?
- Related literature:
- Physics: V. Bazhanov et. al., Z. Tsuboi, ...
- Mathematics: Hernandez-Jimbo (cf. Felder-Zhang)
- Our motivation comes from Frassek-Pestun (2018): Input: a pair of Young diagrams $\boldsymbol{\lambda}, \boldsymbol{\mu}$ of total size n and a collection of points $\left\{x_{i}\right\}$-one for each column of $\boldsymbol{\lambda}$ Output: a rational Lax matrix $L_{\lambda, \chi, \mu}(z)$ linear in z with $q \operatorname{det} L_{\lambda, \underline{x}, \mu}(z)=\prod_{i} \prod_{k=1}^{\lambda_{i}^{t}}\left(z-x_{i}-(k-1)\right)$.
- Their Questions:
- Degeneration procedure (moving columns from $\boldsymbol{\lambda}$ to $\boldsymbol{\mu}$)
- Trigonometric counterpart (depending on 3 Young diagrams)
- Degeneration of trigonometric Lax to rational Lax

Higher rank generalization

- Theorem (Frassek-Pestun-T, '19): (a) The shifted Yangian $Y_{\mu}\left(\mathfrak{g l}_{n}\right)$ admits an RLL realization iff μ-antidominant. (b) Homomorphisms of [BFN, '16] produce rational Lax matrices $L_{\lambda, \chi ;}(z)$ polynomial in z of degree $\frac{|\lambda|+|\mu|}{n}$ for any pair of Young diagrams of length $<n$ and $n||\boldsymbol{\lambda}|+|\boldsymbol{\mu}|$. (c) $L_{\lambda, \underline{x} ; \mu}(z)$ is a normalized limit of $L_{\boldsymbol{\lambda} \cup \mu, \underline{x} \cup \underline{x}^{\prime} ; \emptyset}(z), x_{?}^{\prime} \rightarrow \infty$.

Higher rank generalization

- Theorem (Frassek-Pestun-T, '19): (a) The shifted Yangian $Y_{\mu}\left(\mathfrak{g l}_{n}\right)$ admits an RLL realization iff μ-antidominant. (b) Homomorphisms of [BFN, '16] produce rational Lax matrices $L_{\lambda, \chi ; \mu}(z)$ polynomial in z of degree $\frac{|\boldsymbol{\lambda}|+|\boldsymbol{\mu}|}{n}$ for any pair of Young diagrams of length $<n$ and $n||\boldsymbol{\lambda}|+|\boldsymbol{\mu}|$. (c) $L_{\lambda, \underline{\chi} ; \mu}(z)$ is a normalized limit of $L_{\boldsymbol{\lambda} \cup \mu, \underline{x} \cup \underline{x}^{\prime} ; \emptyset}(z), x_{?}^{\prime} \rightarrow \infty$.
- Theorem (Frassek-Pestun-T, '19): (a) $U_{\mu^{+}, \mu^{-}}\left(L \mathfrak{g l}{ }_{n}\right)$ admits an RLL realization iff μ^{+}, μ^{-}-antidominant. (b) Homomorphisms of [FT, '17] produce trigonometric Lax matrices $L_{\lambda, \underline{\chi} ; \mu^{+}, \mu^{-}}(z)$ polynomial in z of degree $\frac{|\lambda|+\left|\mu^{+}\right|+\left|\mu^{-}\right|}{n}$ for any $\boldsymbol{\lambda}, \boldsymbol{\mu}^{+}, \boldsymbol{\mu}^{-}$of length $<n$ and $n\left||\boldsymbol{\lambda}|+\left|\boldsymbol{\mu}^{+}\right|+\left|\boldsymbol{\mu}^{-}\right|\right.$. (c) $L_{\boldsymbol{\lambda}, \underline{\chi} ; \boldsymbol{\mu}^{+}, \boldsymbol{\mu}^{-}}(z)$ is a normalized limit of $\mathrm{L}_{\boldsymbol{\lambda} \cup \boldsymbol{\mu}^{+} \cup \boldsymbol{\mu}^{-}, \underline{\chi} \cup \underline{\underline{x}}^{\prime} ; \emptyset, \emptyset}(z)$ as $x_{?}^{\prime} \rightarrow 0$ or ∞.

Higher rank generalization

- Theorem (Frassek-Pestun-T, '19): (a) The shifted Yangian $Y_{\mu}\left(\mathfrak{g l}_{n}\right)$ admits an RLL realization iff μ-antidominant. (b) Homomorphisms of [BFN, '16] produce rational Lax matrices $L_{\lambda, \chi ; \mu}(z)$ polynomial in z of degree $\frac{|\boldsymbol{\lambda}|+|\boldsymbol{\mu}|}{n}$ for any pair of Young diagrams of length $<n$ and $n||\boldsymbol{\lambda}|+|\boldsymbol{\mu}|$. (c) $L_{\lambda, \underline{\chi} ; \mu}(z)$ is a normalized limit of $L_{\boldsymbol{\lambda} \cup \mu, \underline{x} \cup \underline{x}^{\prime} ; \emptyset}(z), x_{?}^{\prime} \rightarrow \infty$.
- Theorem (Frassek-Pestun-T, '19): (a) $U_{\mu^{+}, \mu^{-}}\left(L \mathfrak{g l}{ }_{n}\right)$ admits an RLL realization iff μ^{+}, μ^{-}-antidominant. (b) Homomorphisms of [FT, '17] produce trigonometric Lax matrices $L_{\lambda, \underline{\chi} ; \mu^{+}, \mu^{-}}(z)$ polynomial in z of degree $\frac{|\lambda|+\left|\mu^{+}\right|+\left|\mu^{-}\right|}{n}$ for any $\boldsymbol{\lambda}, \boldsymbol{\mu}^{+}, \boldsymbol{\mu}^{-}$of length $<n$ and $n\left||\boldsymbol{\lambda}|+\left|\boldsymbol{\mu}^{+}\right|+\left|\boldsymbol{\mu}^{-}\right|\right.$. (c) $L_{\boldsymbol{\lambda}, \underline{\chi} ; \boldsymbol{\mu}^{+}, \boldsymbol{\mu}^{-}}(z)$ is a normalized limit of $\mathrm{L}_{\boldsymbol{\lambda} \cup \boldsymbol{\mu}^{+} \cup \boldsymbol{\mu}^{-}, \underline{\chi} \cup \underline{x}^{\prime} ; \emptyset, \emptyset}(z)$ as $x_{?}^{\prime} \rightarrow 0$ or ∞.
- Also $L_{\boldsymbol{\lambda}, \underline{\underline{X}} ; \boldsymbol{\mu}^{+}, \boldsymbol{\mu}^{-}}(z)$ degenerates to $\mathrm{L}_{\boldsymbol{\lambda}, \underline{\underline{\chi}} ; \boldsymbol{\mu}^{+} \cup \boldsymbol{\mu}^{-}}(z)$.

Corollaries

- Homomorphisms $Y_{\mu_{1}+\mu_{2}}\left(L \mathfrak{g l}_{n}\right) \rightarrow Y_{\mu_{1}}\left(L_{\mathfrak{g l}}^{n}\right.$) $) \otimes Y_{\mu_{2}}\left(L_{\mathfrak{g l}}^{n}\right.$), recovering the main construction of [FKPRW, '16].

Corollaries

- Homomorphisms $Y_{\mu_{1}+\mu_{2}}\left(L \mathfrak{g l}_{n}\right) \rightarrow Y_{\mu_{1}}\left(L \mathfrak{g l}_{n}\right) \otimes Y_{\mu_{2}}\left(L \mathfrak{g l}_{n}\right)$, recovering the main construction of [FKPRW, '16].
- Recover coproduct homomorphisms of [Finkelberg-T, '17]: $U_{\mu_{1}^{+}+\mu_{2}^{+}, \mu_{1}^{-}+\mu_{2}^{-}}\left(L \mathfrak{g l} l_{n}\right) \rightarrow U_{\mu_{1}^{+}, \mu_{1}^{-}}\left(L \mathfrak{g l}_{n}\right) \otimes U_{\mu_{2}^{+}, \mu_{2}^{-}}\left(L \mathfrak{g l}_{n}\right)$.

Corollaries

- Homomorphisms $Y_{\mu_{1}+\mu_{2}}\left(L \mathfrak{g l}_{n}\right) \rightarrow Y_{\mu_{1}}\left(L_{\mathfrak{g l}}^{n} \boldsymbol{)}\right) \otimes Y_{\mu_{2}}\left(L_{\mathfrak{g l}}^{n}\right.$), recovering the main construction of [FKPRW, '16].
- Recover coproduct homomorphisms of [Finkelberg-T, '17]: $U_{\mu_{1}^{+}+\mu_{2}^{+}, \mu_{1}^{-}+\mu_{2}^{-}}\left(L \mathfrak{g l} l_{n}\right) \rightarrow U_{\mu_{1}^{+}, \mu_{1}^{-}}\left(L \mathfrak{g l}_{n}\right) \otimes U_{\mu_{2}^{+}, \mu_{2}^{-}}\left(L \mathfrak{g l} l_{n}\right)$.
- The integral form of $U_{\mu^{+}, \mu^{-}}\left(L \mathfrak{g l}_{n}\right)$ (i.e. $\mathbb{C}\left[q, q^{-1}\right]$-subalgebra, commutative at $q=1$) of [Finkelberg-T, '18] is immediate.

Corollaries

 recovering the main construction of [FKPRW, '16].

- Recover coproduct homomorphisms of [Finkelberg-T, '17]: $U_{\mu_{1}^{+}+\mu_{2}^{+}, \mu_{1}^{-}+\mu_{2}^{-}}\left(L \mathfrak{g l} l_{n}\right) \rightarrow U_{\mu_{1}^{+}, \mu_{1}^{-}}\left(L \mathfrak{g l}_{n}\right) \otimes U_{\mu_{2}^{+}, \mu_{2}^{-}}\left(L \mathfrak{g l}_{n}\right)$.
- The integral form of $U_{\mu^{+}, \mu^{-}}\left(L \mathfrak{g l}_{n}\right)$ (i.e. $\mathbb{C}\left[q, q^{-1}\right]$-subalgebra, commutative at $q=1$) of [Finkelberg-T, '18] is immediate.
- New approach towards truncated shifted algebras.

Corollaries

- Homomorphisms $Y_{\mu_{1}+\mu_{2}}\left(L \mathfrak{g l}_{n}\right) \rightarrow Y_{\mu_{1}}\left(L_{\mathfrak{g l}}^{n}\right.$) $) \otimes Y_{\mu_{2}}\left(\operatorname{Lgl}_{n}\right)$, recovering the main construction of [FKPRW, '16].
- Recover coproduct homomorphisms of [Finkelberg-T, '17]: $U_{\mu_{1}^{+}+\mu_{2}^{+}, \mu_{1}^{-}+\mu_{2}^{-}}\left(L \mathfrak{g l} l_{n}\right) \rightarrow U_{\mu_{1}^{+}, \mu_{1}^{-}}\left(L \mathfrak{g l}_{n}\right) \otimes U_{\mu_{2}^{+}, \mu_{2}^{-}}\left(L \mathfrak{g l} l_{n}\right)$.
- The integral form of $U_{\mu^{+}, \mu^{-}}\left(L \mathfrak{g l}_{n}\right)$ (i.e. $\mathbb{C}\left[q, q^{-1}\right]$-subalgebra, commutative at $q=1$) of [Finkelberg-T, '18] is immediate.
- New approach towards truncated shifted algebras.
- Obtain Bethe subalgebras $B(C)$ for $C \in \operatorname{Mat}_{\mathrm{n} \times \mathrm{n}}(\mathbb{C})$.

Corollaries

 recovering the main construction of [FKPRW, '16].

- Recover coproduct homomorphisms of [Finkelberg-T, '17]: $U_{\mu_{1}^{+}+\mu_{2}^{+}, \mu_{1}^{-}+\mu_{2}^{-}}\left(L \mathfrak{g l} l_{n}\right) \rightarrow U_{\mu_{1}^{+}, \mu_{1}^{-}}\left(L \mathfrak{g l}_{n}\right) \otimes U_{\mu_{2}^{+}, \mu_{2}^{-}}\left(L \mathfrak{g l}_{n}\right)$.
- The integral form of $U_{\mu^{+}, \mu^{-}}\left(L \operatorname{gl}_{n}\right)$ (i.e. $\mathbb{C}\left[q, q^{-1}\right]$-subalgebra, commutative at $q=1$) of [Finkelberg-T, '18] is immediate.
- New approach towards truncated shifted algebras.
- Obtain Bethe subalgebras $B(C)$ for $C \in \operatorname{Mat}_{\mathrm{n} \times \mathrm{n}}(\mathbb{C})$.
- By the construction of [BFN, '16] and [Finkelberg-T, '17], actually obtain Bethe subalgebras in quantized (K-theoretic) Coulomb branches of type A quiver gauge theories

References

This talk is based on the recent joint works with Michael Finkelberg, Roman Gonin, Rouven Frassek, Vasily Pestun:
[Finkelberg-T, '17] Multiplicative slices, relativistic Toda and shifted quantum affine algebras, Progress in Mathematics (2019), 172pp, DOI:10.1007/978-3-030-23531-4.
[Finkelberg-T, '18] Shifted quantum affine algebras: integral forms in type A, Arnold Mathematical Journal (2019), 87pp, DOI:10.1007/s40598-019-00118-7.
[Gonin-T, '18] On Sevostyanov's construction of quantum difference Toda lattices, International Mathematics Research Notices (2019), 61pp, DOI:10.1093/imrn/rnz083.
[Frassek-Pestun-T, '19] Rational and trigonometric Lax matrices via antidominantly shifted Yangians and quantum affine algebras, in preparation.

The End

Thank you!

