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Motivation

Many classical special functions are closely related to moduli

spaces of differential equations: the hypergeometric equation

lives in a 0-dimensional moduli space (i.e., is uniquely deter-

mined by singularities), the Painlevé transcendents describe flows

in 2-dimensional moduli spaces (with similar flows in more com-

plicated cases).

There are discrete analogues of these equations, culminating in

elliptic hypergeometric functions (satisfying a difference equation

on an elliptic curve), and elliptic Painlevé. So want to understand

moduli spaces of (symmetric) elliptic difference equations, as well

as their degenerations.
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What are we classifying?

Differential equations:

v′ = Av, A ∈ gln(k(C))

(Ordinary) Difference equations:

v(z + 1) = A(z)v(z), A ∈ GLn(k(z))

q-Difference equations:

v(qz) = A(z)v(z), A ∈ GLn(k(z))

Also elliptic equations and symmetric difference equations (add
condition v(−z) = v(z) or v(1/z) = v(z) with appropriate consis-
tency/cocycle condition).
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Example: Painlevé VI

If we consider second-order Fuchsian differential equations with

four singular points with specified exponents, then the result-

ing moduli space is a (rational) elliptic surface, with one fiber

(of type I∗0/D4) removed. The fundamental group of the com-

plement of the singular locus is independent of the locations

of the singularities, and the moduli space is biholomorphic to

the moduli space of monodromy representations. If we fix a

given monodromy representation and take the singularities 0, 1,

∞, λ, then the equation can be expressed in terms of a function

u(λ) satisfying a second-order nonlinear differential equation (the

Painlevé VI equation).
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This both degenerates (to mildly non-Fuchsian equations) and

generalizes (to difference or q-difference equations). There are

also discrete isomonodromy deformations, in which the expo-

nents are shifted by integers. I will focus on these, both because

they survive to more general equations and because I don’t know

how to construct (or even interpret geometrically) the continu-

ous deformations in full generality. . .
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Why geometry?

Differential equations are (in general) connections on vector bun-

dles, which are hard∗ to deal with. But when the bundle is triv-

ial, a connection is just a matrix of differentials (A(z)dz). Leads

to notion of “Higgs bundle”: a vector bundle W with a map

φ : W ∗ →W ∗ ⊗ ωC.

If φ is meromorphic, we can factor it:

φ⊗ ω−1
C = B−t∞B

t
0

with B∞ : V → W , B0 : V → W ⊗ ωC, which we can encode as

B : W ∗ → V ∗ ⊗ (OC ⊕ ωC).

∗For me, at least!
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We may write OC ⊕ ωC ∼= ρ∗OX(1) where X is the ruled surface

P(OC ⊕ ωC), so by adjunction and twisting:

B : ρ∗V ⊗OX(−1)→ ρ∗W

This is a relative minimal resolution of its cokernel, so it’s equiv-

alent to consider M = coker(B).

So Higgs bundles are classified by sheaves on P(OC ⊕ ωC) which

are transverse to the section “at infinity”∗; the singularities are

determined by how M meets the (anticanonical) double section.

∗Why “at infinity”? Removing it gives the (symplectic) total space of the
cotangent bundle.
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More generally, given (nearly∗) any Poisson ruled surface, there’s

a similar interpretation of sheaves as as not-quite differential or

difference equations.† Conversely, every case above apart from

differential equations on higher-genus curves and nonsymmetric

elliptic difference equations corresponds in this way to sheaves

on rational surfaces.

Symmetric equations arise when the anticanonical curve Cα is

integral, in which case B∞ and B0 are related by an involution

on the curve. If the curve is reduced but reducible, we get a

difference equation on one of the two components.

∗There are some weird cases in characteristic 2
†See arXiv:1307.4033, “Generalized Hitchin systems on rational surfaces”
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The singularities of the equation correspond to places where
the sheaf meets the kernel of the Poisson structure (the “an-
ticanonical curve”); if we resolve these by blowing up, we get
a compactly supported sheaf on the symplectic part of the sur-
face. Gives a symplectic moduli space (pace Tyurin, Bottacin,
Hurtubise/Markman), and a family of commuting symplectomor-
phisms (twist by a line bundle).

Main problems: (1) the moduli space is wrong (they aren’t ac-
tually connections), (2) the corresponding (Hitchin-type) inte-
grable system is autonomous/isospectral.

This does give useful results, though: if the moduli space of
Higgs bundles is rational, this will be inherited by the corre-
sponding component of the moduli space of equations (and if
explicit leads to an explicit Lax pair)
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Why noncommutative geometry?

Differential equations ∼ D-modules, so can hope for difference

equations to be modules (or sheaves) on something nice. Since

D-modules on C ∼ sheaves on a noncommutative version of

T ∗C, and work with Okounkov constructed elliptic Painlevé as

an action on a moduli space of sheaves on a noncommutative

P2, maybe difference equations also correspond to sheaves on a

noncommutative rational surface?
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Noncommutative projective surfaces

Note that a noncommutative deformation of a commutative sur-
face determines a Poisson structure, or (essentialy equivalently)
an anticanonical curve. On a rational surface, this is generically
smooth genus 1 ⇒ symmetric elliptic difference case.

One objective: Given any Poisson projective surface, associate
noncommutative deformation parametrized by J(Cα) (e.g., when
Cα is nodal, get q ∈ k∗). (Also find difference/differential inter-
pretation(s) and understand derived equivalences between them!)

The case Cα smooth is the most straightforward (the geometry is
simplest), but most results hold in general (+ for general elliptic
difference equations, etc.).∗

∗By contrast, nearly all work in special functions corresponds to Cα reducible
or even nonreduced!
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The Higgs bundle setting suggests that the right thing to look

at originally are noncommutative ruled surfaces. Van den Bergh

gives a general construction of such things, as well as a con-

struction of blowups. There are some issues, though:

Problem 1: We need to relate noncommutative ruled surfaces

to difference/differential operators.

Problem 2: Very little is known about the birational geometry of

such surfaces; even the fact that blowups in sufficiently distinct

points commute is not known!
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Noncommutative ruled surfaces à la van den Bergh are difficult
to classify in general, but one can show the only “truly” non-
commutative cases are those deforming commutative surfaces.
These are actually fairly straightforward to classify, and in each
case∗ the category of “line bundles” on the surface has a rep-
resentation in difference or differential operators (unique up to
an overall scalar gauge transformation, which can essentially be
fixed by choosing a sheaf corresponding to a first-order equation
and gauging it to be trivial).

More precisely, such surfaces are classified by torsion-free sheaves
on C×C with Chern class 2∆. If the support is nonreduced, then
there is a representation in differential operators; if both maps
are separable, there is a representation in difference operators
(which satisfy a symmetry condition if the support is integral).
∗Insert usual characteristic 2 comment here
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Main idea: given a scheme X, flat degree 2 morphisms π1 :

X → Y1, π2 : X → Y2, there is a corresponding “double affine

Hecke algebra” (the fiber coproduct of EndYi(πi∗OX) over OX)

which can be represented by difference/differential reflection op-

erators. When Yi are smooth curves, this is Morita equivalent

to its spherical algebra (which inherits a representation as sym-

metric difference or differential operators), and the Rees algebra

w.r.to the filtration by the Bruhat order of D∞ has Proj a non-

commutative ruled surface.

If we twist by a line bundle on X, we can get every noncom-

mutative ruled surface in this way. (This gives a representation

in twisted operators, but can be gauged to a representation in

untwisted operators.)
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Transforms

An important deformation of P1 × P1 comes from the following
bigraded algebra: the space of operators of bidegree (m,n) is
spanned by operators xi(~Dx)j for 0 ≤ i ≤ m, 0 ≤ j ≤ n. (In the
limit ~→ 0, this becomes commutative.)

The operators (−~Dx)ixj satisfy the same relations∗, giving an
automorphism of this noncommutative P1 × P1 taking bidegree
(m,n) to bidgree (n,m).

The analogous isomorphisms for other noncommutative defor-
mations of P1× P1 also swap multiplication operators and differ-
ential/difference operators; gives 16 different generalized Fourier
transforms (inc. Mellin, “middle convolution”, elliptic), each a
(formal) integral transform with explicit kernel.
∗Take the Laplace transform!
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Transforms, cont’d

There are also transformations corresponding to “elementary
transformations” (blow up a point of a ruled surface, blow down
its fiber); these typically correspond to scalar gauge transforma-
tions. There are also some “transformations” corresponding to
the fact that commutative blowups in distinct points commute;
these are trivial on functions, and just correspond to writing
down the singularities in a different order! Note that if we blew
up m points, the transformations act on NS(X) or K0(X) as a
reflection group of type Em+1. . .

It’s nontrivial to show that these various transformations actually
make sense in the noncommutative setting; the difficulty is that
there are far too many cases to consider explicitly (as in the
Fourier case).
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How to deal with this? It turns out that each construction (of

ruled surfaces, of blowups, and of noncommutative P2) comes

with a simple description of both the derived category∗ and the

appropriate t-structure. So we can construct isomorphisms be-

tween noncommutative surfaces by constructing derived equiv-

alences and checking that they preserve the t-structure. This

turns out to be easy and mostly independent of which case we

are in. (There are a few cases in which one of the atomic trans-

formations fails, but these can be completely understood.)

∗In the differential graded sense.
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Isomonodromy

One can show that twisting a sheaf by a line bundle acts as a

gauge transformation/isomonodromy deformation, and such a

transformation which does not introduce apparent singularities

arises by twisting. So discrete isomonodromy deformations are

intrinsic to the geometry. We can thus apply the various bira-

tional transformations to obtain different interpretations of our

nonautonomous integrable systems as isomonodromy transfor-

mations. This can change the qualitative structure of the linear

equation: e.g., Painlevé VI also has an interpretation in terms of

symmetric difference equations with a certain type of singularity

at infinity.
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Other (non-derived) results

The standard GIT construction of the semistable moduli space
of sheaves on a commutative surface requires certain inequalities
that actually fail as written in the noncommutative case. It is
still open in general to show that these are projective, with two
exceptions: sheaves of rank 1 (∼ Hilbert schemes), and sheaves
of rank 0. (The surface X0 above is X[1].) For n > 1, this gives
rise to versal deformation of the Hilbert scheme of any projective
rational surface (with Cα smooth). . .

There is also an analogue of the Riemann-Hilbert functor in the
symmetric elliptic case, taking symmetric q-difference equations
on C∗/〈p〉 to symmetric p-difference equations on C∗/〈q〉. (This
recovers Birkhoff monodromy in a hand-waving limit as p→ 0.)
This extends to an action of SL3(Z). . .
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Special to the rational case is that the moduli space can ac-

tually be 0-dimensional. The corresponding integrable system is

boring, but the linear equations are still quite interesting: this in-

cludes a large variety of hypergeometric equations (nFn−1, nφn−1,

elliptic analogues, etc.). In geometric terms, these correspond

to −2-curves, and correspond to (real) roots for the Kac-Moody

Weyl group W (Em+1).

More generally, given any Chern class on our surface, we can

apply W (Em+1) to try to make the equation simpler (put it in

the fundamental chamber!). For each (even) dimension > 2, we

can figure out the minimal representative of each W (Em+1) orbit

of Chern classes with moduli space of the given dimension.
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Derived equivalences

The 2-dimensional case is of particular interest, as in that case
the moduli space is itself a projective algebraic surface. If a
2-dimensional moduli space of sheaves on a (noncommutative)
surface has a universal family, then it determines a map of derived
categories. In the cases corresponding to minimal Lax pairs, this
map of derived categories is an equivalence, and one can use this
to identify the moduli space.

One finds that for any rational number d/r, and any type of
second-order Lax pair for a (discrete) Painlevé equation, there is
a corresponding Lax pair as a (discrete or continuous) connection
on a vector bundle of rank 2r and degree d, in which all of
the singularities occur with multiplicity r. (This includes the
case 1/0 =∞, corresponding to Sakai’s construction of discrete
Painlevé equations)
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Derived equivalences (cont’d)

The derived equivalences arising from moduli spaces are a spe-

cial case of a more general construction: there is an action of

the group Z.Λ2
E8

oW (E8)×SL2(Z) on the moduli space of “non-

commutative rational elliptic surfaces” such that two surfaces

in the same orbit are always derived equivalent (with a specific

identification of their Grothendieck groups). This reduces to a

well-known action of the same group as derived equivalences in

the family of (commutative) rational elliptic surfaces.

If the anticanonical curve is smooth, then these are the only

pairs of derived equivalent noncommutative surfaces; this should

be true in general, but requires us to understand derived equiv-

alences between singular Gorenstein curves of genus 1.
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Poisson structures

Another benefit of having a simple description of the derived

category is that it lets us construct Poisson structures on very

general moduli spaces. The most general result is that the “de-

rived moduli stack” of objects in D(X) has a natural “0-shifted”

Poisson structure, and (derived) restriction to the anticanoni-

cal curve is Lagrangian (i.e., its fibers are symplectic leaves).

This turns out not to be too hard; the hard part is showing

that such a 0-shifted Poisson structure induces an actual Pois-

son structure on the algebraic space classifying “simple” ob-

jects (s.t. τ≤0REnd(M) = k), which we can show when there

are no obstructions. (The analogue of a reduction due to Hur-

tubise/Markman extends this to general simple sheaves.)
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