Representations of Yangians via Howe duality

Maxim Nazarov

Department of Mathematics, University of York

In honour of Vitaly Tarasov and Alexander Varchenko



References:

e Etingof- Varchenko (2002)
Dynamical Weyl groups and applications

e Felder - Markov - Tarasov - Varchenko (2000)
Differential equations compatible with KZ equations

e Tarasov - Varchenko (2002)
Duality for Knizhnik-Zamolodchikov and dynamical equations



g - complex semisimple Lie algebra, g=n -+t +n’

A* - set of positive roots of g, p=3 >«
aceAt

S - Weyl group of g with shifted action on h*
cod=c(A+p)—p for c€S and Nebh*
U(h) > X - polynomial function on h*
X — oo X - shifted action of o € & on U(h)
(coX)N\)=X(c"1o)) for Aep*

v :U(g) = U(g)/(nU(g) + U(g)n") = U(h) - canonical projection



g - complex semisimple Lie algebra, g=n -+t +n’

A* - set of positive roots of g, p=3 >«
aceAt

S - Weyl group of g with shifted action on h*

cod=c(A+p)—p for c€S and Nebh*

U(h) > X - polynomial function on h*
X — oo X - shifted action of o € & on U(h)
(o X)N)=X(c" o)) for Aep*
v :U(g) = U(g)/(nU(g) + U(g)n") = U(h) - canonical projection

Theorem (Harish-Chandra): U(g)® — U(h)®
v



U(g) C A - associative algebra with subspace V C A such that
(i) multiplication map U(g) @ V— A: X® Y — X Y is bijective
(i) V C Ais invariant and locally finite under adjoint action of g

A D Norm(nA) - normalizer of the right ideal nA C A

Y eNorm(nA) <= Y -nACnA

R =Norm(nA)/(nA) - the Mickelsson algebra of the pair (A, g)



U(g) C A - associative algebra with subspace V C A such that

(i) multiplication map U(g) @ V— A: X® Y — X Y is bijective

(i) V C Ais invariant and locally finite under adjoint action of g
A D Norm(nA) - normalizer of the right ideal nA C A
Y eNorm(nA) <= Y -nACnA
R =Norm(nA)/(nA) - the Mickelsson algebra of the pair (A, g)
N - arbitrary left A-module

R acts on the space of coinvariants N, = N/(n N)



AT > aq,...,ar - simple positive roots where r =rank g
n > E;, n>F, hoH.forc=1,...,r-Chevalley generators

H, = oV € b - coroot vector for any positive root o € A™

E, and F, - Cartan-Weyl basis elements of n’ and n

a=a; = Ey=E;F,=F,H,=Hc
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AT > aq,...,ar - simple positive roots where r =rank g
n > E;, n>F, hoH.forc=1,...,r-Chevalley generators

H, = oV € b - coroot vector for any positive root o € A™

E, and F, - Cartan-Weyl basis elements of n’ and n

a = Q¢ — EOL:E07FOLZFC)HOL:HC

B 0 (—-1)° s s
o _g 8! (Ho + p(Ha) +1) ... (Ha + p(Ha) + 8) Fo b

=
P= H P, - extremal projector for g
acAt

Theorem (Asherova - Smirnov - Tolstoy):

PP=P and E,P=PF,=0 for acAt



U(h) C A - rings of fractions of U(h) C A with denominators set
{Hy+z|acAt, zeZ} cU(p)
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U(h) C A - rings of fractions of U(h) C A with denominators set
{Hy+z|acAt, zeZ} cU(p)

nA and An’ - right and left ideals of the algebra A respectively

R =Norm(nA)/(nA) - localized Mickelsson algebra

Proposition:
(i) Z=A/(nA+ An’) is a torsion-free U(h)-bimodule, and an
associative algebra with multiplication

AxB=APB

(ii) restriction to R ¢ A/(nA) of the projection A/(nA) — Z
along An’ is an algebra isomorphism R — Z



U(h) > X - polynomial function on h*

S > o - simple reflection corresponding to ac € AT

0c040c ... = 0g0cog ... for c#d

Meg Med
£c: A — A - linear map defined by setting for any Y € A
> 1

§C(Y)_§ S'He(Hc—1)...(Hc—s+1)

Egad3, (V)



U(h) > X - polynomial function on h*

S > 0. - simple reflection corresponding to ac € AT

0c040c ... = 0g0cog ... for c#d

Meg Med
£c: A — A - linear map defined by setting for any Y € A
> 1

§C(Y)_§ S'He(Hc—1)...(Hc—s+1)

Egad3, (V)

Proposition:
Ec(XY) € (0c0X)Ee(Y) +nA
so that a linear map £. : A — A/(nA) can be defined by setting

Eo(XY)=(0c0X)Ec(Y) +nA for Xe U(h)



Proposition:
(i) oc(nA) Ckerég
(i) €c(oc(An’)) C nA+An'
Hence the Zhelobenko operator £ : Z — Z can be defined as

£c - oc applied to elements of A taken modulo n A + An’



Proposition:

(i) oc(nA) Ckerég

(i) €c(oc(An’)) C nA+An'
Hence the Zhelobenko operator £ : Z — Z can be defined as
£c - oc applied to elements of A taken modulo n A + An’

Theorem (Zhelobenko):

gcgdfvc cee = fvdgcfvd ... for c#d

Meg Meg

Hence for any reduced decomposition o = og, ... o¢, in & the map

gO':gQ gck . z—>z
does not depend on the choice of the decomposition.



7 O ZY - invariants under adjoint action of b ; preserved by &,
Theorem (Khoroshkin - Ogievetsky):
(i) &(A xB) = £,(A) x &,(B)forany A, BcZando € &
(i) & |Z"Y is an involution for o = o1, ..., 0,

We get an action of the Weyl group & by authomorphisms of ZY
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7 O ZY - invariants under adjoint action of b ; preserved by &,

Theorem (Khoroshkin - Ogievetsky):
(i) &(A xB) = £,(A) x &,(B)forany A, BcZando € &
(i) & |Z"Y is an involution for o = o1, ..., 0,

We get an action of the Weyl group & by authomorphisms of ZY

v: A—Z=A/(nA+ An’') - canonical projection

Z"CcZ=A/(nA+ An') - double coset vector space
Q={Acz"|{,(A)=Aforeach c € &}
Theorem (Khoroshkin - Nazarov - Vinberg):
~ maps the centralizer A® C A isomorphically onto Q

Example: if A = U(g) then ~ is the Harish-Chandra isomorphism



Yangian Y(gl,) - associative algebra generated by T 3 where
ij=1,.,n and a=1,2,...
Ty(w) = 05+ T + TPu2 4 e Y(gt,) [[u ']
Ej - nx nmatrix units; 1, = Ey1 + ... + Epp - identity matrix

Tiu)=TWw)®1, and Ty(v)=1,® T(v).

n
R(u) = u— Y  E;®Ej - Yang R-matrix
=1

Relations in Y(gl,) are written the as n? x n?® matrix equation

R(u—v) Ty(u) To(v) = To(v) Ti(u) R(u —v).



Yangian Y(gl,) - associative algebra generated by T 3 where
ij=1,.,n and a=1,2,...
Ty(w) = 05+ T + TPu2 4 e Y(gt,) [[u ']
Ej - nx nmatrix units; 1, = Ey1 + ... + Epp - identity matrix
Ti(u)=T(uy®1, and To(v)=1, T(v).
n
R(u) = u— Y  E;®Ej - Yang R-matrix
ij=1

Relations in Y(gl,) are written the as n? x n?® matrix equation
R(u—v) Ty(u) To(v) = T2(v) Ta(u) R(u —v).

n
Y(gl,) - Hopf algebra: Tj(u) — Z Tik(u) ® Tij(u) - comultiplication
k=1



Twisted Yangian Y(sp,) - subalgebra of Y(gl,) generated by S,.j(-a)

Sj(u) =05+ S{Vu™ + 8P u2 + ..
S(u) = T'(~u) T(u)

t- transposition relative to the form ( , ) on C" fixed by sp,, C gl,

R(u) - transpose of R(u) relative to ( , ) in either tensor factor
Si(u)=S(u)®1, and Sx(v)=1,® S(v).

Relations in Y(sp,) can be written as the matrix equations

R(u—v) S;(u) R(—u—v) Sa(v) = Sa(v) R(—u—v) Sy(u) R(u—v)
S(u) — S(-u)

St(u) = S(~u) — 5



deg T,-j(-a) =a—1fora=1,2,.. defines ascending filtration on Y(gl,)
al, [u] = g, +gl,-u+gl, U’ +...-polynomial current Lie algebra
Proposition (Drinfeld):

T,.j(.a) — Ej u@~1 Hopf algebra isomorphism grY(gl,,) — U(gl, [u])
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deg T(a) =a—1fora=1,2,.. defines ascending filtration on Y(gl,)
al, [u] = g, +gl,-u+gl, U’ +...-polynomial current Lie algebra
Proposition (Drinfeld):

Tj( ) s Ejj ud~" Hopf algebra isomorphism gr Y(gl,,) — U(gl, [u])

deg S,(ja) =a—1fora=1,2,... defines ascending filtration on Y(sp,)

gl,[u] D t - twisted polynomial current Lie algebra relative to ( , )
t={X(u) € gly[u] | X(~u) = = X'(uv) }

Proposition (Olshanski):
(i) S(a)n—> Eju?~" — Ef (—u)@" isomorphism grY(sp,) — U(t)
(i) comultiplication Y(sp,) — Y(sp,) ® Y(al,) # Y(sp,)®?2



Gmn - Grassmann algebra of C™ = C™ @ C" generated by x
a=1,....m and i=1,...,n
Xai Xpj = —Xbj Xai

0,i - left derivation (inner multiplication) in Gy, relative to x4



Gmn - Grassmann algebra of C™ = C™ @ C" generated by x
a=1,....m and i=1,...,n
Xaj Xpj = —Xpj Xaj
0,i - left derivation (inner multiplication) in Gy, relative to x4
GDnmpn - associative algebra generated by left multiplications by x 5;

and left derivations dy; acting on Gmp

m
U(gln) = GDmn : Ej— Y Xai 0z - natural action of gl, on Gmn

a=1
n

U(glm) = GDmn: Eap > > Xai Op - Natural action of gly, on Gmn

i=1



Gmn - Grassmann algebra of C™ = C™ @ C" generated by x
a=1,....m and i=1,...,n
Xaj Xpj = —Xpj Xaj
0,i - left derivation (inner multiplication) in Gy, relative to x4

GDnmpn - associative algebra generated by left multiplications by x 5;

and left derivations dy; acting on Gmp

m
U(gln) = GDmn : Ej— Y Xai 0z - natural action of gl, on Gmn

a=1
n

U(glm) = GDmn: Eap > > Xai Op - Natural action of gly, on Gmn

i=1

The images of U(gl,,) and U(gl,) in GDmp are mutual centralizers



Choose the form (, ) whose matrix in the standard basis of C" is

0 1

[5;/-5,-]77].:1 whereiT=n—i+1ande=1,-1fori<n/2,i>n/2

glp, Dsp, - spanned by Fj; = Ej—¢jc;E5 wherei,j=1,...,n



Choose the form (, ) whose matrix in the standard basis of C" is

0 1

[5;/-5,-]77].:1 where i=n—i+1ande; =1,-1fori<n/2,i>n/2

glp, Dsp, - spanned by Fj; = Ej—¢jc;E5 wherei,j=1,...,n

sp, acts on Gmp by restriction from gl,,; for c,d = +1,...,£m put
Pci=X-ci and qg=0-; if ¢<O0

Pci=¢€i0ci and q¢ =¢jXcr if ¢>0
m

U(spp) = GDpn = Fjj > —mdj + > Ppeiqq - action of sp, on Gy

Cc=—m



Label the standard basis vectors in C2" by —m,...,—1,1,....m

Choose symplectic form on C?™ with the matrix

glom D spop, - spanned by Fog = Eg—sign(c) sign (d) E_qg ¢



Label the standard basis vectors in C2" by —m,...,—1,1,....m

Choose symplectic form on C?™ with the matrix

glom D spop, - spanned by Fog = Eg—sign(c) sign (d) E_qg ¢

Theorem (Howe):
(i) The Lie algebra sp,,, acts on Gy, so that
n
U(spam) = GDmn : Fog = —dea N/ 2+ Z qciPdi
i=1
(i) Images of U(sp,,,,) and U(sp,) in GDmp - mutual centralizers



For A = U(gl,;,) ® GDmn fix diagonal embedding U(gl,,,) — A
n

Eap — Eap® 1 ‘1‘21 ® Xai Opi
i=1



For A = U(gl,;,) ® GDmn fix diagonal embedding U(gl,,,) — A
n

Eap — Eap® 1 ‘1‘21 ® Xai Opi
i—1

take matrix inverse (u+ E)~" = [Xap(u)] 7

For E = [Eab] a,b=1

m
a,b=1



For A = U(gl,;,) ® GDmn fix diagonal embedding U(gl,,,) — A
n

Eap — Eap® 1 ‘1‘21 ® Xai Opi
i—1

take matrix inverse (u+ E)~" = [Xap(u)] 7

For E = [Eab] a,b=1

m
a,b=1
Theorem (Arakawa - Suzuki -Tsuchiya):

(i) a homomorphism Y(gl,) — A%m is defined by

m
Tii(u) — 0j + Z Xab(U) ® Xaj Opj
a,b=1

(i) A%'m is generated by U(gl,,)?' ® 1 and the image of Y(gl,,)

F:gly,-Mod — gl x Y(gl,)-Mod: M — M® Gmn



For A = U(spy,,,) ® GDmp fix diagonal embedding U(spo,) — A

n
Foo = Feg ® 14+1® (= 0cgn/2+ ) i Pai)

i=1



For A = U(spy,,,) ® GDmp fix diagonal embedding U(spo,) — A

n
Foo = Feg ® 14+1® (= 0cgn/2+ ) i Pai)
i—1
_ take the inverse (u+ F)™" = [Xcq(u)]

m
c,d=—m

For F = [ch];’f g



For A = U(spy,,,) ® GDmp fix diagonal embedding U(spo,) — A

n
Foo = Feg ® 14+1® (= 0cgn/2+ ) i Pai)

i=1

_ . take the inverse (u+ F)™" = [Xog(u)]

m
c,d=—m

m
For F = [FCd]c,d:
Theorem (Khoroshkin - Nazarov):

(i) @ homomorphism Y(sp,) — A®P2m is defined by

m
S,'/(U) = 0j + Z Xea (U — % _m)®pciqdj

c,d=—m

(i) U(spsy,)®P2m @ 1 and the image of Y(sp,,) generate APam

F Spgm‘MOd — SPoy, X Y(ﬁpn)'MOdZ M — M®gmn



(9,7) = (alm,als) OF (sPom,sp,) - dual pair where g =n + b +n’
Fy: g-Mod — Y(f)-Mod :
M — F\(M)=F(M)) =(M®Gmn)s for Aebp*



(g,f) = (glm,9l,) oOr (spom,sp,) - dual pair where g =n+bh +n’
Fx: g-Mod — Y(f)-Mod :

M s F\(M) = F(M)} = (M@ Gmp)) for Aep*
Example: for (g,f) = (gly,0!,) and M = M,, - Verma module,
the Y(f)-module F,(M,) is equivalent to the tensor product

AT @ ANERE@ @ A
(M,...,Am)and (uq,...,um) - labels of the weights A, i € b*;
A¢ = d-th exterior power of C" = subspace in G, of degree d

Y(gl,) -action defined by Tj(u) — d§; + x; 9 /(u+ z) for z € C;

assuming that A9 = {0} if d #0,1,2,...



Let A\, u € b* vary so that the difference A — p is fixed
Let \ be generic, thatis A(H,) ¢ Z forall « € A™
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Proposition: X - generic = Y(f)-module Fy(M,,) is irreducible

The algebra Z acts on F(M,), via the isomorphism Z — R
The subalgebra Z" C Z acts on F(M,) = Fa(M,)

oo - the longest element in the Weyl group & of g

£o = &, for o = g - Zhelobenko automorphism of the algebra Z



Let A\, u € b* vary so that the difference A — p is fixed
Let \ be generic, thatis A(H,) ¢ Z forall « € A™

Proposition: X - generic = Y(f)-module Fy(M,,) is irreducible

The algebra Z acts on F(M,), via the isomorphism Z — R
The subalgebra Z" C Z acts on F(M,) = Fa(M,)
oo - the longest element in the Weyl group & of g

&0 = &, for o = og - Zhelobenko automorphism of the algebra Z

Proposition (Tarasov - Varchenko, Khoroshkin - Nazarov):

for generic \ the automorphism &, determines an intertwiner
Fa(My) = FA(M,)*

of Y(f)-modules, where F,(M,)* is the dual module to Fx(M,)



Example: for (g,f) = (8!, 9l,) and any A, u the Y(f)-module

Fa(Mu)* = Am7hm @ @ NETA2 @ AT 2 Froox (Mogop)



Example: for (g,f) = (8!, 9l,) and any A, u the Y(f)-module
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Y(f) D X(f) - subalgebra such that Y(f) = X(f) ® centre of Y(f)



Example: for (g,f) = (8!, 9l,) and any A, u the Y(f)-module
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Example: for (g,f) = (8!, 9l,) and any A, u the Y(f)-module

* A~ )\m Hm Ap— - ~
FAM,)" = A —mi1 ©- Auz—uz ® /\21 2 Fogor (Mogon)

Y(f) D X(f) - subalgebra such that Y(f) = X(f) ® centre of Y(f)
Let A + p be dominant, thatis (A + p) (Ha) # —1,-2,...fora € A™
Theorem (Khoroshkin-Nazarov):
(i) the automorphism &, of Z determines Y(f)-intertwiner
Fa(My) = Fa(My)*
(i) the image of this intertwiner is non-zero and Y(§) -irreducible

(iii) up to an action of the centre of Y(§), every irreducible

finite-dimensional Y(§)-module arises from (ii) for some A, u
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Remarks:
e the proof of (ii) uses the surjectivity of v for A = U(g) ® GDmn

e when both A and p are dominant, (ii) for f = gl,,, sp, was
known before (Cherednik, Nazarov)

e when \ + p is dominant and y is arbitrary, (ii) for f = gl,, was
a conjecture (Cherednik) proved by using the crystal bases
(Akasaka - Kashiwara) or the Drinfeld generators of Y(gl,)
(Nazarov - Tarasov)

o the intertwiner from (i) can be written down explicitly
e (i,ii,iii) extend to the dual pair (so2m, On) ON Gmn

e (i,ii) also extend to the dual pairs (gl,,, g,) and (spom, On),
(s0om, sp,) ON the space of polynomials in mn commuting
variables; the last two dual pairs arise (Howe) from the
Weil representation of the real symplectic group Spamn



