Representations of Yangians via Howe duality

Maxim Nazarov
Department of Mathematics, University of York

In honour of Vitaly Tarasov and Alexander Varchenko

References:

- Etingof - Varchenko (2002)

Dynamical Weyl groups and applications

- Felder - Markov - Tarasov - Varchenko (2000) Differential equations compatible with KZ equations
- Tarasov - Varchenko (2002)

Duality for Knizhnik-Zamolodchikov and dynamical equations
\mathfrak{g}-complex semisimple Lie algebra, $\mathfrak{g}=\mathfrak{n}+\mathfrak{h}+\mathfrak{n}^{\prime}$
Δ^{+}- set of positive roots of $\mathfrak{g}, \quad \rho=\frac{1}{2} \sum_{\alpha \in \Delta^{+}} \alpha$
\mathfrak{S} - Weyl group of \mathfrak{g} with shifted action on \mathfrak{h}^{*}

$$
\sigma \circ \lambda=\sigma(\lambda+\rho)-\rho \quad \text { for } \quad \sigma \in \mathfrak{S} \quad \text { and } \quad \lambda \in \mathfrak{h}^{*}
$$

$\mathrm{U}(\mathfrak{h}) \ni X$ - polynomial function on \mathfrak{h}^{*}
$X \mapsto \sigma \circ X$ - shifted action of $\sigma \in \mathfrak{S}$ on $\mathrm{U}(\mathfrak{h})$

$$
(\sigma \circ X)(\lambda)=X\left(\sigma^{-1} \circ \lambda\right) \quad \text { for } \quad \lambda \in \mathfrak{h}^{*}
$$

$\gamma: \mathbf{U}(\mathfrak{g}) \rightarrow \mathbf{U}(\mathfrak{g}) /\left(\mathfrak{n} \mathrm{U}(\mathfrak{g})+\mathrm{U}(\mathfrak{g}) \mathfrak{n}^{\prime}\right) \cong \mathrm{U}(\mathfrak{h})$ - canonical projection
\mathfrak{g}-complex semisimple Lie algebra, $\mathfrak{g}=\mathfrak{n}+\mathfrak{h}+\mathfrak{n}^{\prime}$
Δ^{+}- set of positive roots of $\mathfrak{g}, \quad \rho=\frac{1}{2} \sum_{\alpha \in \Delta^{+}} \alpha$
\mathfrak{S} - Weyl group of \mathfrak{g} with shifted action on \mathfrak{h}^{*}

$$
\sigma \circ \lambda=\sigma(\lambda+\rho)-\rho \quad \text { for } \quad \sigma \in \mathfrak{S} \quad \text { and } \quad \lambda \in \mathfrak{h}^{*}
$$

$\mathrm{U}(\mathfrak{h}) \ni X$ - polynomial function on \mathfrak{h}^{*}
$X \mapsto \sigma \circ X$ - shifted action of $\sigma \in \mathfrak{S}$ on $\mathrm{U}(\mathfrak{h})$

$$
(\sigma \circ X)(\lambda)=X\left(\sigma^{-1} \circ \lambda\right) \quad \text { for } \quad \lambda \in \mathfrak{h}^{*}
$$

$\gamma: \mathbf{U}(\mathfrak{g}) \rightarrow \mathbf{U}(\mathfrak{g}) /\left(\mathfrak{n} \mathrm{U}(\mathfrak{g})+\mathbf{U}(\mathfrak{g}) \mathfrak{n}^{\prime}\right) \cong \mathbf{U}(\mathfrak{h})$ - canonical projection
Theorem (Harish-Chandra):

$$
\mathbf{U}(\mathfrak{g})^{\mathfrak{g}} \xrightarrow[\gamma]{\sim} \mathbf{U}(\mathfrak{h})^{\mathfrak{S}}
$$

$\mathrm{U}(\mathfrak{g}) \subset$ A - associative algebra with subspace $\mathrm{V} \subset$ A such that
(i) multiplication map $\mathrm{U}(\mathfrak{g}) \otimes \mathrm{V} \rightarrow \mathrm{A}: X \otimes Y \mapsto X Y$ is bijective
(ii) $\mathrm{V} \subset \mathrm{A}$ is invariant and locally finite under adjoint action of \mathfrak{g}
$\mathrm{A} \supset \operatorname{Norm}(\mathfrak{n A})$ - normalizer of the right ideal $\mathfrak{n} \mathrm{A} \subset \mathrm{A}$

$$
Y \in \operatorname{Norm}(\mathfrak{n} \mathrm{~A}) \quad \Longleftrightarrow \quad Y \cdot \mathfrak{n} \mathrm{~A} \subset \mathfrak{n} \mathrm{~A}
$$

$\mathrm{R}=\operatorname{Norm}(\mathfrak{n} \mathrm{A}) /(\mathfrak{n} \mathrm{A})-$ the Mickelsson algebra of the pair $(\mathrm{A}, \mathfrak{g})$
$\mathrm{U}(\mathfrak{g}) \subset$ A - associative algebra with subspace $\mathrm{V} \subset$ A such that
(i) multiplication map $\mathrm{U}(\mathfrak{g}) \otimes \mathrm{V} \rightarrow \mathrm{A}: X \otimes Y \mapsto X Y$ is bijective
(ii) $\mathrm{V} \subset \mathrm{A}$ is invariant and locally finite under adjoint action of \mathfrak{g}
$\mathrm{A} \supset \operatorname{Norm}(\mathfrak{n A})$ - normalizer of the right ideal $\mathfrak{n} \mathrm{A} \subset \mathrm{A}$

$$
Y \in \operatorname{Norm}(\mathfrak{n} \mathrm{~A}) \quad \Longleftrightarrow \quad Y \cdot \mathfrak{n} \mathrm{~A} \subset \mathfrak{n} \mathrm{~A}
$$

$\mathrm{R}=\operatorname{Norm}(\mathfrak{n} \mathrm{A}) /(\mathfrak{n} \mathrm{A})-$ the Mickelsson algebra of the pair $(\mathrm{A}, \mathfrak{g})$
N - arbitrary left A-module
R acts on the space of coinvariants $N_{\mathfrak{n}}=N /(\mathfrak{n} N)$
$\Delta^{+} \ni \alpha_{1}, \ldots, \alpha_{r}$ - simple positive roots where $r=\operatorname{rank} \mathfrak{g}$ $\mathfrak{n}^{\prime} \ni E_{c}, \mathfrak{n} \ni F_{c}, \mathfrak{h} \ni H_{c}$ for $c=1, \ldots, r$ - Chevalley generators
$H_{\alpha}=\alpha^{\vee} \in \mathfrak{h}$ - coroot vector for any positive root $\alpha \in \Delta^{+}$
E_{α} and F_{α} - Cartan-Weyl basis elements of \mathfrak{n}^{\prime} and \mathfrak{n}

$$
\alpha=\alpha_{c} \quad \Longrightarrow \quad E_{\alpha}=E_{c}, F_{\alpha}=F_{c}, H_{\alpha}=H_{c}
$$

$\Delta^{+} \ni \alpha_{1}, \ldots, \alpha_{r}$ - simple positive roots where $r=$ rank \mathfrak{g} $\mathfrak{n}^{\prime} \ni E_{c}, \mathfrak{n} \ni F_{c}, \mathfrak{h} \ni H_{c}$ for $c=1, \ldots, r$ - Chevalley generators $H_{\alpha}=\alpha^{\vee} \in \mathfrak{h}$ - coroot vector for any positive root $\alpha \in \Delta^{+}$ E_{α} and F_{α} - Cartan-Weyl basis elements of \mathfrak{n}^{\prime} and \mathfrak{n}

$$
\begin{gathered}
\alpha=\alpha_{c} \quad \Longrightarrow \quad E_{\alpha}=E_{c}, F_{\alpha}=F_{c}, H_{\alpha}=H_{c} \\
P_{\alpha}=\sum_{s=0}^{\infty} \frac{(-1)^{s}}{s!\left(H_{\alpha}+\rho\left(H_{\alpha}\right)+1\right) \ldots\left(H_{\alpha}+\rho\left(H_{\alpha}\right)+s\right)} F_{\alpha}^{s} E_{\alpha}^{s} \\
P=\prod_{\alpha \in \Delta^{+}}^{\overrightarrow{ }} P_{\alpha}-\text { extremal projector for } \mathfrak{g}
\end{gathered}
$$

$\Delta^{+} \ni \alpha_{1}, \ldots, \alpha_{r}$ - simple positive roots where $r=$ rank \mathfrak{g}
$\mathfrak{n}^{\prime} \ni E_{c}, \mathfrak{n} \ni F_{c}, \mathfrak{h} \ni H_{c}$ for $c=1, \ldots, r$ - Chevalley generators
$H_{\alpha}=\alpha^{\vee} \in \mathfrak{h}$ - coroot vector for any positive root $\alpha \in \Delta^{+}$
E_{α} and F_{α} - Cartan-Weyl basis elements of \mathfrak{n}^{\prime} and \mathfrak{n}

$$
\begin{gathered}
\alpha=\alpha_{c} \quad \Longrightarrow \quad E_{\alpha}=E_{c}, F_{\alpha}=F_{c}, H_{\alpha}=H_{c} \\
P_{\alpha}=\sum_{s=0}^{\infty} \frac{(-1)^{s}}{s!\left(H_{\alpha}+\rho\left(H_{\alpha}\right)+1\right) \ldots\left(H_{\alpha}+\rho\left(H_{\alpha}\right)+s\right)} F_{\alpha}^{s} E_{\alpha}^{s} \\
P=\prod_{\alpha \in \Delta^{+}}^{\overrightarrow{ }} P_{\alpha}-\text { extremal projector for } \mathfrak{g}
\end{gathered}
$$

Theorem (Asherova-Smirnov - Tolstoy):

$$
P^{2}=P \quad \text { and } \quad E_{\alpha} P=P F_{\alpha}=0 \quad \text { for } \quad \alpha \in \Delta^{+}
$$

$$
\left\{\boldsymbol{H}_{\alpha}+\boldsymbol{z} \mid \alpha \in \Delta^{+}, z \in \mathbb{Z}\right\} \subset \mathbf{U}(\mathfrak{h})
$$

$\mathfrak{n} \overline{\mathrm{A}}$ and $\overline{\mathrm{A}} \mathfrak{n}^{\prime}$ - right and left ideals of the algebra $\overline{\mathrm{A}}$ respectively $\overline{\mathrm{R}}=\operatorname{Norm}(\mathfrak{n} \overline{\mathrm{A}}) /(\mathfrak{n} \overline{\mathrm{A}})$ - localized Mickelsson algebra

$$
\left\{\boldsymbol{H}_{\alpha}+\boldsymbol{z} \mid \alpha \in \Delta^{+}, z \in \mathbb{Z}\right\} \subset \mathbf{U}(\mathfrak{h})
$$

$\mathfrak{n} \overline{\mathrm{A}}$ and $\overline{\mathrm{A}} \mathfrak{n}^{\prime}$ - right and left ideals of the algebra $\overline{\mathrm{A}}$ respectively
$\overline{\mathrm{R}}=\operatorname{Norm}(\mathfrak{n} \overline{\mathrm{A}}) /(\mathfrak{n} \overline{\mathrm{A}})$ - localized Mickelsson algebra

Proposition:

(i) $\overline{\mathrm{Z}}=\overline{\mathrm{A}} /\left(\mathfrak{n} \overline{\mathrm{A}}+\overline{\mathrm{A}} \mathfrak{n}^{\prime}\right)$ is a torsion-free $\overline{\mathrm{U}(\mathfrak{h})}$-bimodule, and an associative algebra with multiplication

$$
A * B=A P B
$$

(ii) restriction to $\overline{\mathrm{R}} \subset \overline{\mathrm{A}} /(\mathfrak{n} \overline{\mathrm{A}})$ of the projection $\overline{\mathrm{A}} /(\mathfrak{n} \overline{\mathrm{A}}) \rightarrow \overline{\mathrm{Z}}$ along $\overline{\mathrm{A}} \mathfrak{n}^{\prime}$ is an algebra isomorphism $\overline{\mathrm{R}} \rightarrow \overline{\mathrm{Z}}$
$\mathrm{U}(\mathfrak{h}) \ni X$ - polynomial function on \mathfrak{h}^{*}
$\mathfrak{S} \ni \sigma_{c}$ - simple reflection corresponding to $\alpha_{c} \in \Delta^{+}$

$$
\underbrace{\sigma_{c} \sigma_{d} \sigma_{c} \cdots}_{m_{c d}}=\underbrace{\sigma_{d} \sigma_{c} \sigma_{d} \cdots}_{m_{c d}} \text { for } c \neq d
$$

$\xi_{c}: \mathrm{A} \rightarrow \overline{\mathrm{A}}$ - linear map defined by setting for any $Y \in \mathrm{~A}$

$$
\xi_{c}(Y)=\sum_{s=0}^{\infty} \frac{1}{s!H_{c}\left(H_{c}-1\right) \ldots\left(H_{c}-s+1\right)} E_{c}^{s} \text { ad }_{F_{c}}^{s}(Y)
$$

$\mathrm{U}(\mathfrak{h}) \ni X$ - polynomial function on \mathfrak{h}^{*}
$\mathfrak{S} \ni \sigma_{c}$ - simple reflection corresponding to $\alpha_{c} \in \Delta^{+}$

$$
\underbrace{\sigma_{c} \sigma_{d} \sigma_{c} \cdots}_{m_{c d}}=\underbrace{\sigma_{d} \sigma_{c} \sigma_{d} \ldots}_{m_{c d}} \quad \text { for } \quad c \neq d
$$

$\xi_{c}: \mathrm{A} \rightarrow \overline{\mathrm{A}}$ - linear map defined by setting for any $Y \in \mathrm{~A}$

$$
\xi_{c}(Y)=\sum_{s=0}^{\infty} \frac{1}{s!H_{c}\left(H_{c}-1\right) \ldots\left(H_{c}-s+1\right)} E_{c}^{s} \operatorname{ad}_{F_{c}}^{s}(Y)
$$

Proposition:

$$
\xi_{c}(X Y) \in\left(\sigma_{c} \circ X\right) \xi_{c}(Y)+\mathfrak{n} \overline{\mathrm{A}}
$$

so that a linear map $\bar{\xi}_{c}: \overline{\mathrm{A}} \rightarrow \overline{\mathrm{A}} /(\mathfrak{n} \overline{\mathrm{A}})$ can be defined by setting

$$
\bar{\xi}_{c}(X Y)=\left(\sigma_{c} \circ X\right) \xi_{c}(Y)+\mathfrak{n} \overline{\mathrm{A}} \quad \text { for } \quad X \in \overline{\mathrm{U}(\mathfrak{h})}
$$

Proposition:

(i) $\sigma_{c}(\mathfrak{n} \overline{\mathrm{~A}}) \subset \operatorname{ker} \bar{\xi}_{c}$
(ii) $\bar{\xi}_{c}\left(\sigma_{c}\left(\overline{\mathrm{~A}} \mathfrak{n}^{\prime}\right)\right) \subset \mathfrak{n} \overline{\mathrm{A}}+\overline{\mathrm{A}} \mathfrak{n}^{\prime}$

Hence the Zhelobenko operator $\check{\xi}_{c}: \overline{\mathrm{Z}} \rightarrow \overline{\mathrm{Z}}$ can be defined as
$\bar{\xi}_{c} \cdot \sigma_{c}$ applied to elements of $\overline{\mathrm{A}}$ taken modulo $\mathfrak{n} \overline{\mathrm{A}}+\overline{\mathrm{A}} \mathfrak{n}^{\prime}$

Proposition:

(i) $\sigma_{c}(\mathfrak{n} \overline{\mathrm{~A}}) \subset \operatorname{ker} \bar{\xi}_{c}$
(ii) $\bar{\xi}_{c}\left(\sigma_{c}\left(\overline{\mathrm{~A}} \mathfrak{n}^{\prime}\right)\right) \subset \mathfrak{n} \overline{\mathrm{A}}+\overline{\mathrm{A}} \mathfrak{n}^{\prime}$

Hence the Zhelobenko operator $\check{\xi}_{c}: \overline{\mathrm{Z}} \rightarrow \overline{\mathrm{Z}}$ can be defined as
$\bar{\xi}_{c} \cdot \sigma_{c}$ applied to elements of $\overline{\mathrm{A}}$ taken modulo $\mathfrak{n} \overline{\mathrm{A}}+\overline{\mathrm{A}} \mathfrak{n}^{\prime}$
Theorem (Zhelobenko):

$$
\underbrace{\check{\xi}_{c} \check{\xi}_{d} \check{\xi}_{c} \cdots}_{m_{c d}}=\underbrace{\check{\xi}_{d} \check{\xi}_{c} \check{\xi}_{d} \ldots}_{m_{c d}} \quad \text { for } \quad c \neq d
$$

Hence for any reduced decomposition $\sigma=\sigma_{c_{1}} \ldots \sigma_{c_{k}}$ in \mathfrak{S} the map

$$
\check{\xi}_{\sigma}=\check{\xi}_{c_{1}} \ldots \check{\xi}_{c_{k}}: \overline{\mathbf{Z}} \rightarrow \overline{\mathbf{Z}}
$$

does not depend on the choice of the decomposition.
$\overline{\mathrm{Z}} \supset \overline{\mathrm{Z}}^{\mathfrak{h}}$ - invariants under adjoint action of \mathfrak{h}; preserved by $\check{\xi}_{\sigma}$
Theorem (Khoroshkin-Ogievetsky):
(i) $\check{\xi}_{\sigma}(A * B)=\check{\xi}_{\sigma}(A) * \check{\xi}_{\sigma}(B)$ for any $A, B \in \overline{\mathrm{Z}}$ and $\sigma \in \mathfrak{S}$
(ii) $\check{\xi}_{\sigma} \mid \overline{\mathrm{Z}}^{\mathrm{h}}$ is an involution for $\sigma=\sigma_{1}, \ldots, \sigma_{r}$

We get an action of the Weyl group \mathfrak{S} by authomorphisms of $\bar{Z}^{\mathfrak{h}}$
$\bar{Z} \supset \bar{Z}^{\mathfrak{h}}$ - invariants under adjoint action of \mathfrak{h}; preserved by $\check{\xi}_{\sigma}$ Theorem (Khoroshkin - Ogievetsky):
(i) $\check{\xi}_{\sigma}(A * B)=\check{\xi}_{\sigma}(A) * \check{\xi}_{\sigma}(B)$ for any $A, B \in \overline{\mathrm{Z}}$ and $\sigma \in \mathfrak{S}$
(ii) $\check{\xi}_{\sigma} \mid \overline{\mathrm{Z}}^{\natural}$ is an involution for $\sigma=\sigma_{1}, \ldots, \sigma_{r}$

We get an action of the Weyl group \mathfrak{S} by authomorphisms of $\bar{Z}^{\mathfrak{h}}$
$\gamma: \overline{\mathrm{A}} \rightarrow \overline{\mathrm{Z}}=\overline{\mathrm{A}} /\left(\mathfrak{n} \overline{\mathrm{A}}+\overline{\mathrm{A}} \mathfrak{n}^{\prime}\right)$ - canonical projection
$\mathrm{Z}^{\mathfrak{h}} \subset \mathrm{Z}=\mathrm{A} /\left(\mathfrak{n} \mathrm{A}+\mathrm{A} \mathfrak{n}^{\prime}\right)$ - double coset vector space

$$
\mathrm{Q}=\left\{\boldsymbol{A} \in \mathrm{Z}^{\mathfrak{h}} \mid \check{\xi}_{\sigma}(\boldsymbol{A})=\boldsymbol{A} \text { for each } \sigma \in \mathfrak{S}\right\}
$$

$\bar{Z} \supset \bar{Z}^{\mathfrak{h}}$ - invariants under adjoint action of \mathfrak{h}; preserved by $\check{\xi}_{\sigma}$ Theorem (Khoroshkin-Ogievetsky):
(i) $\check{\xi}_{\sigma}(A * B)=\check{\xi}_{\sigma}(A) * \check{\xi}_{\sigma}(B)$ for any $A, B \in \overline{\mathrm{Z}}$ and $\sigma \in \mathfrak{S}$
(ii) $\check{\xi}_{\sigma} \mid \overline{\mathrm{Z}}^{\natural}$ is an involution for $\sigma=\sigma_{1}, \ldots, \sigma_{r}$

We get an action of the Weyl group \mathfrak{S} by authomorphisms of $\bar{Z}^{\mathfrak{h}}$
$\gamma: \overline{\mathrm{A}} \rightarrow \overline{\mathrm{Z}}=\overline{\mathrm{A}} /\left(\mathfrak{n} \overline{\mathrm{A}}+\overline{\mathrm{A}} \mathfrak{n}^{\prime}\right)$ - canonical projection
$\mathrm{Z}^{\mathfrak{h}} \subset \mathrm{Z}=\mathrm{A} /\left(\mathfrak{n} \mathrm{A}+\mathrm{A} \mathfrak{n}^{\prime}\right)$ - double coset vector space

$$
\mathrm{Q}=\left\{\boldsymbol{A} \in \mathrm{Z}^{\mathfrak{h}} \mid \check{\xi}_{\sigma}(\boldsymbol{A})=\boldsymbol{A} \text { for each } \sigma \in \mathfrak{S}\right\}
$$

Theorem (Khoroshkin - Nazarov - Vinberg):
γ maps the centralizer $\mathrm{A}^{\mathfrak{g}} \subset \mathrm{A}$ isomorphically onto \mathbf{Q}
$\bar{Z} \supset \bar{Z}^{\mathfrak{h}}$ - invariants under adjoint action of \mathfrak{h}; preserved by $\check{\xi}_{\sigma}$
Theorem (Khoroshkin-Ogievetsky):
(i) $\check{\xi}_{\sigma}(A * B)=\check{\xi}_{\sigma}(A) * \check{\xi}_{\sigma}(B)$ for any $A, B \in \overline{\mathrm{Z}}$ and $\sigma \in \mathfrak{S}$
(ii) $\check{\xi}_{\sigma} \mid \overline{\mathrm{Z}}^{\natural}$ is an involution for $\sigma=\sigma_{1}, \ldots, \sigma_{r}$

We get an action of the Weyl group \mathfrak{S} by authomorphisms of $\bar{Z}^{\mathfrak{h}}$
$\gamma: \overline{\mathrm{A}} \rightarrow \overline{\mathrm{Z}}=\overline{\mathrm{A}} /\left(\mathfrak{n} \overline{\mathrm{A}}+\overline{\mathrm{A}} \mathfrak{n}^{\prime}\right)$ - canonical projection
$\mathrm{Z}^{\mathfrak{h}} \subset \mathrm{Z}=\mathrm{A} /\left(\mathfrak{n} \mathrm{A}+\mathrm{A} \mathfrak{n}^{\prime}\right)$ - double coset vector space

$$
\mathrm{Q}=\left\{\boldsymbol{A} \in \mathrm{Z}^{\mathfrak{h}} \mid \check{\xi}_{\sigma}(\boldsymbol{A})=\boldsymbol{A} \text { for each } \sigma \in \mathfrak{S}\right\}
$$

Theorem (Khoroshkin - Nazarov - Vinberg):
γ maps the centralizer $\mathrm{A}^{\mathfrak{g}} \subset \mathrm{A}$ isomorphically onto Q
Example: if $\mathrm{A}=\mathrm{U}(\mathfrak{g})$ then γ is the Harish-Chandra isomorphism

Yangian $\mathrm{Y}\left(\mathfrak{g l}_{n}\right)$ - associative algebra generated by $T_{i j}^{(a)}$ where

$$
\begin{gathered}
i, j=1, \ldots, n \quad \text { and } a=1,2, \ldots \\
T_{i j}(u)=\delta_{i j}+T_{i j}^{(1)} u^{-1}+T_{i j}^{(2)} u^{-2}+\ldots \in \mathrm{Y}\left(\mathfrak{g l}_{n}\right)\left[\left[u^{-1}\right]\right] .
\end{gathered}
$$

$E_{i j}-n \times n$ matrix units; $1_{n}=E_{11}+\ldots+E_{n n}$ - identity matrix

$$
\begin{gathered}
T_{1}(u)=T(u) \otimes 1_{n} \quad \text { and } \quad T_{2}(v)=1_{n} \otimes T(v) . \\
R(u)=u-\sum_{i, j=1}^{n} E_{i j} \otimes E_{j i}-\text { Yang } R \text {-matrix }
\end{gathered}
$$

Relations in $\mathrm{Y}\left(\mathfrak{g l}_{n}\right)$ are written the as $n^{2} \times n^{2}$ matrix equation

$$
R(u-v) T_{1}(u) T_{2}(v)=T_{2}(v) T_{1}(u) R(u-v) .
$$

Yangian $\mathrm{Y}\left(\mathfrak{g r}_{n}\right)$ - associative algebra generated by $T_{i j}^{(a)}$ where

$$
\begin{gathered}
i, j=1, \ldots, n \quad \text { and } \quad a=1,2, \ldots \\
T_{i j}(u)=\delta_{i j}+T_{i j}^{(1)} u^{-1}+T_{i j}^{(2)} u^{-2}+\ldots \in \mathrm{Y}\left(\mathfrak{g l}_{n}\right)\left[\left[u^{-1}\right]\right] .
\end{gathered}
$$

$E_{i j}-n \times n$ matrix units; $1_{n}=E_{11}+\ldots+E_{n n}$ - identity matrix

$$
\begin{gathered}
T_{1}(u)=T(u) \otimes 1_{n} \quad \text { and } \quad T_{2}(v)=1_{n} \otimes T(v) . \\
R(u)=u-\sum_{i, j=1}^{n} E_{i j} \otimes E_{j i}-\text { Yang } R \text {-matrix }
\end{gathered}
$$

Relations in $\mathrm{Y}\left(\mathfrak{g l}_{n}\right)$ are written the as $n^{2} \times n^{2}$ matrix equation

$$
R(u-v) T_{1}(u) T_{2}(v)=T_{2}(v) T_{1}(u) R(u-v) .
$$

$\mathrm{Y}\left(\mathfrak{g l}_{n}\right)$ - Hopf algebra : $T_{i j}(u) \mapsto \sum_{k=1}^{n} T_{i k}(u) \otimes T_{k j}(u)$ - comultiplication

Twisted Yangian $Y\left(\mathfrak{s p}_{n}\right)$ - subalgebra of $Y\left(\mathfrak{g l}_{n}\right)$ generated by $S_{i j}^{(a)}$

$$
\begin{gathered}
S_{i j}(u)=\delta_{i j}+S_{i j}^{(1)} u^{-1}+S_{i j}^{(2)} u^{-2}+\ldots \\
S(u)=T^{t}(-u) T(u)
\end{gathered}
$$

${ }^{t}$ - transposition relative to the form \langle,$\rangle on \mathbb{C}^{n}$ fixed by $\mathfrak{s p}_{n} \subset \mathfrak{g l}_{n}$
$\widetilde{R}(u)$ - transpose of $R(u)$ relative to \langle,$\rangle in either tensor factor$

$$
S_{1}(u)=S(u) \otimes 1_{n} \quad \text { and } \quad S_{2}(v)=1_{n} \otimes S(v) .
$$

Relations in $\mathrm{Y}\left(\mathfrak{s p}_{n}\right)$ can be written as the matrix equations

$$
R(u-v) S_{1}(u) \widetilde{R}(-u-v) S_{2}(v)=S_{2}(v) \widetilde{R}(-u-v) S_{1}(u) R(u-v)
$$

$$
S^{t}(u)=S(-u)-\frac{S(u)-S(-u)}{2 u}
$$

$\operatorname{deg} T_{i j}^{(a)}=a-1$ for $a=1,2, \ldots$ defines ascending filtration on $Y\left(\mathfrak{g l}_{n}\right)$ $\mathfrak{g l}_{n}[u]=\mathfrak{g l}_{n}+\mathfrak{g l}_{n} \cdot u+\mathfrak{g l}_{n} \cdot u^{2}+\ldots$ - polynomial current Lie algebra

Proposition (Drinfeld):
$T_{i j}^{(a)} \mapsto E_{i j} u^{a-1}$ Hopf algebra isomorphism $\operatorname{grY}\left(\mathfrak{g l}_{n}\right) \rightarrow \mathrm{U}\left(\mathfrak{g l}_{n}[u]\right)$
$\operatorname{deg} T_{i j}^{(a)}=a-1$ for $a=1,2, \ldots$ defines ascending filtration on $Y\left(\mathfrak{g l}_{n}\right)$ $\mathfrak{g l}_{n}[u]=\mathfrak{g l}_{n}+\mathfrak{g l}_{n} \cdot u+\mathfrak{g l}_{n} \cdot u^{2}+\ldots$ - polynomial current Lie algebra

Proposition (Drinfeld):
$T_{i j}^{(a)} \mapsto E_{i j} u^{a-1}$ Hopf algebra isomorphism $\operatorname{grY}\left(\mathfrak{g l}_{n}\right) \rightarrow \mathrm{U}\left(\mathfrak{g l}_{n}[u]\right)$
$\operatorname{deg} S_{i j}^{(a)}=a-1$ for $a=1,2, \ldots$ defines ascending filtration on $Y\left(\mathfrak{s p}_{n}\right)$ $\mathfrak{g l}_{n}[u] \supset \mathfrak{t}$ - twisted polynomial current Lie algebra relative to \langle,

$$
\mathfrak{t}=\left\{X(u) \in \mathfrak{g l}_{n}[u] \mid X(-u)=-X^{t}(u)\right\}
$$

$\operatorname{deg} T_{i j}^{(a)}=a-1$ for $a=1,2, \ldots$ defines ascending filtration on $Y\left(\mathfrak{g l}_{n}\right)$ $\mathfrak{g l}_{n}[u]=\mathfrak{g l}_{n}+\mathfrak{g l}_{n} \cdot u+\mathfrak{g l}_{n} \cdot u^{2}+\ldots$ - polynomial current Lie algebra

Proposition (Drinfeld):
$T_{i j}^{(a)} \mapsto E_{i j} u^{a-1}$ Hopf algebra isomorphism $\operatorname{grY}\left(\mathfrak{g l}_{n}\right) \rightarrow \mathrm{U}\left(\mathfrak{g l}_{n}[u]\right)$
$\operatorname{deg} S_{i j}^{(a)}=a-1$ for $a=1,2, \ldots$ defines ascending filtration on $Y\left(\mathfrak{s p}_{n}\right)$ $\mathfrak{g l}_{n}[u] \supset \mathfrak{t}$ - twisted polynomial current Lie algebra relative to \langle,

$$
\mathfrak{t}=\left\{X(u) \in \mathfrak{g l}_{n}[u] \mid X(-u)=-X^{t}(u)\right\}
$$

Proposition (Olshanski):
(i) $S_{i j}^{(a)} \mapsto E_{i j} u^{a-1}-E_{i j}^{t}(-u)^{a-1}$ isomorphism gr $Y\left(\mathfrak{s p}_{n}\right) \rightarrow U(\mathfrak{t})$
(ii) comultiplication $\mathrm{Y}\left(\mathfrak{s p}_{n}\right) \rightarrow \mathrm{Y}\left(\mathfrak{s p}_{n}\right) \otimes \mathrm{Y}\left(\mathfrak{g l}_{n}\right) \neq \mathrm{Y}\left(\mathfrak{s p}_{n}\right)^{\otimes 2}$
$\mathcal{G}_{m n}$ - Grassmann algebra of $\mathbb{C}^{m n}=\mathbb{C}^{m} \otimes \mathbb{C}^{n}$ generated by $x_{a i}$

$$
\begin{gathered}
a=1, \ldots, m \text { and } i=1, \ldots, n \\
x_{a i} x_{b j}=-x_{b j} x_{a i}
\end{gathered}
$$

$\partial_{a i}$ - left derivation (inner multiplication) in $\mathcal{G}_{m n}$ relative to $x_{a i}$
$\mathcal{G}_{m n}$ - Grassmann algebra of $\mathbb{C}^{m n}=\mathbb{C}^{m} \otimes \mathbb{C}^{n}$ generated by $x_{a i}$

$$
\begin{gathered}
a=1, \ldots, m \text { and } i=1, \ldots, n \\
x_{a i} x_{b j}=-x_{b j} x_{a i}
\end{gathered}
$$

$\partial_{a i}$ - left derivation (inner multiplication) in $\mathcal{G}_{m n}$ relative to $x_{a i}$
$\mathcal{G} \mathcal{D}_{m n}$ - associative algebra generated by left multiplications by $x_{a i}$ and left derivations $\partial_{b j}$ acting on $\mathcal{G}_{m n}$
$\mathrm{U}\left(\mathfrak{g l}_{n}\right) \rightarrow \mathcal{G} \mathcal{D}_{m n}: E_{i j} \mapsto \sum_{a=1}^{m} x_{a i} \partial_{a j}$ - natural action of $\mathfrak{g l}_{n}$ on $\mathcal{G}_{m n}$
$\mathrm{U}\left(\mathfrak{g l}_{m}\right) \rightarrow \mathcal{G} \mathcal{D}_{m n}: E_{a b} \mapsto \sum_{i=1}^{n} x_{a i} \partial_{b i}-$ natural action of $\mathfrak{g l}_{m}$ on $\mathcal{G}_{m n}$
$\mathcal{G}_{m n}$ - Grassmann algebra of $\mathbb{C}^{m n}=\mathbb{C}^{m} \otimes \mathbb{C}^{n}$ generated by $x_{a i}$

$$
\begin{gathered}
a=1, \ldots, m \text { and } i=1, \ldots, n \\
x_{a i} x_{b j}=-x_{b j} x_{a i}
\end{gathered}
$$

$\partial_{a i}$ - left derivation (inner multiplication) in $\mathcal{G}_{m n}$ relative to $x_{a i}$
$\mathcal{G} \mathcal{D}_{m n}$ - associative algebra generated by left multiplications by $x_{a i}$ and left derivations $\partial_{b j}$ acting on $\mathcal{G}_{m n}$
$\mathrm{U}\left(\mathfrak{g l}_{n}\right) \rightarrow \mathcal{G} \mathcal{D}_{m n}: E_{i j} \mapsto \sum_{a=1}^{m} x_{a i} \partial_{a j}$ - natural action of $\mathfrak{g l}_{n}$ on $\mathcal{G}_{m n}$
$\mathrm{U}\left(\mathfrak{g l}_{m}\right) \rightarrow \mathcal{G} \mathcal{D}_{m n}: E_{a b} \mapsto \sum_{i=1}^{n} x_{a i} \partial_{b i}-$ natural action of $\mathfrak{g l}_{m}$ on $\mathcal{G}_{m n}$
The images of $\mathrm{U}\left(\mathfrak{g l}_{m}\right)$ and $\mathrm{U}\left(\mathfrak{g l}_{n}\right)$ in $\mathcal{G} \mathcal{D}_{m n}$ are mutual centralizers

Choose the form \langle,$\rangle whose matrix in the standard basis of \mathbb{C}^{n}$ is

$$
\left[\begin{array}{cccccc}
0 & & & & & 1 \\
& \ddots & & & . & \cdot \\
& & 0 & 1 & & \\
& . & -1 & 0 & & \\
-1 & & & & & 0
\end{array}\right]
$$

$$
\left[\delta_{i j} \varepsilon_{i}\right]_{i, j=1}^{n} \text { where } \tilde{I}=n-i+1 \text { and } \varepsilon_{i}=1,-1 \text { for } i \leqslant n / 2, i>n / 2
$$

$$
\mathfrak{g l}_{n} \supset \mathfrak{s p}_{n}-\text { spanned by } F_{i j}=E_{i j}-\varepsilon_{i} \varepsilon_{j} E_{\tilde{j} \imath} \text { where } i, j=1, \ldots, n
$$

Choose the form \langle,$\rangle whose matrix in the standard basis of \mathbb{C}^{n}$ is

$$
\left[\begin{array}{cccccc}
0 & & & & & 1 \\
& \ddots & 0 & 1 & . & \\
& & 0 & -1 & 0 & \\
& . . & & & \ddots & \\
-1 & & & & & 0
\end{array}\right]
$$

$\left[\delta_{i j} \varepsilon_{i}\right]_{i, j=1}^{n}$ where $\tilde{\imath}=n-i+1$ and $\varepsilon_{i}=1,-1$ for $i \leqslant n / 2, i>n / 2$
$\mathfrak{g l}_{n} \supset \mathfrak{s p}_{n}$ - spanned by $F_{i j}=E_{i j}-\varepsilon_{i} \varepsilon_{j} E_{\tilde{j} \imath}$ where $i, j=1, \ldots, n$
$\mathfrak{s p}_{n}$ acts on $\mathcal{G}_{m n}$ by restriction from $\mathfrak{g l}_{n} ;$ for $c, d= \pm 1, \ldots, \pm m$ put

$$
\begin{gathered}
p_{c i}=x_{-c, i} \quad \text { and } q_{c i}=\partial_{-c, i} \text { if } c<0 \\
p_{c i}=\varepsilon_{i} \partial_{c i} \text { and } q_{c i}=\varepsilon_{i} x_{c i} \text { if } c>0 \\
\cup\left(\mathfrak{s p}_{n}\right) \rightarrow \mathcal{G} \mathcal{D}_{m n}: F_{i j} \mapsto-m \delta_{i j}+\sum_{c=-m}^{m} p_{c i} q_{c j}-\text { action of } \mathfrak{p p}_{n} \text { on } \mathcal{G}_{m n}
\end{gathered}
$$

Label the standard basis vectors in $\mathbb{C}^{2 m}$ by $-m, \ldots,-1,1, \ldots, m$
Choose symplectic form on $\mathbb{C}^{2 m}$ with the matrix

$$
\left[\begin{array}{cccccc}
0 & & & & & 1 \\
& \ddots & 0 & 1 & . & \\
& & 0 & -1 & 0 & \\
& . . & & & \ddots & \\
-1 & & & & & 0
\end{array}\right]
$$

$\mathfrak{g l}_{2 m} \supset \mathfrak{s p}_{2 m}-$ spanned by $F_{c d}=E_{c d}-\operatorname{sign}(c) \operatorname{sign}(d) E_{-d,-c}$

Label the standard basis vectors in $\mathbb{C}^{2 m}$ by $-m, \ldots,-1,1, \ldots, m$
Choose symplectic form on $\mathbb{C}^{2 m}$ with the matrix

$$
\left[\begin{array}{cccccc}
0 & & & & & 1 \\
& \ddots & 0 & 1 & . & \\
& & 0 & -1 & 0 & \\
& . . & & & \ddots & \\
-1 & & & & & 0
\end{array}\right]
$$

$\mathfrak{g l}_{2 m} \supset \mathfrak{s p}_{2 m}-$ spanned by $F_{c d}=E_{c d}-\operatorname{sign}(c) \operatorname{sign}(d) E_{-d,-c}$
Theorem (Howe):
(i) The Lie algebra $\mathfrak{s p}_{2 m}$ acts on $\mathcal{G}_{m n}$ so that

$$
\mathrm{U}\left(\mathfrak{s p}_{2 m}\right) \rightarrow \mathcal{G} \mathcal{D}_{m n}: F_{c d} \mapsto-\delta_{c d} n / 2+\sum_{i=1}^{n} q_{c i} p_{d i}
$$

(ii) Images of $U\left(\mathfrak{s p}_{2 m}\right)$ and $U\left(\mathfrak{s p}_{n}\right)$ in $\mathcal{G} \mathcal{D}_{m n}$ - mutual centralizers

For $\mathrm{A}=\mathrm{U}\left(\mathfrak{g l}_{m}\right) \otimes \mathcal{G} \mathcal{D}_{m n}$ fix diagonal embedding $\mathrm{U}\left(\mathfrak{g l}_{m}\right) \rightarrow \mathrm{A}$

$$
E_{a b} \mapsto E_{a b} \otimes 1+\sum_{i=1}^{n} 1 \otimes x_{a i} \partial_{b i}
$$

For $\mathrm{A}=\mathrm{U}\left(\mathfrak{g l}_{m}\right) \otimes \mathcal{G} \mathcal{D}_{m n}$ fix diagonal embedding $\mathrm{U}\left(\mathfrak{g l}_{m}\right) \rightarrow \mathrm{A}$

$$
E_{a b} \mapsto E_{a b} \otimes 1+\sum_{i=1}^{n} 1 \otimes x_{a i} \partial_{b i}
$$

For $E=\left[E_{a b}\right]_{a, b=1}^{m}$ take matrix inverse $(u+E)^{-1}=\left[X_{a b}(u)\right]_{a, b=1}^{m}$

For $\mathrm{A}=\mathrm{U}\left(\mathfrak{g l}_{m}\right) \otimes \mathcal{G} \mathcal{D}_{m n}$ fix diagonal embedding $\mathrm{U}\left(\mathfrak{g l}_{m}\right) \rightarrow \mathrm{A}$

$$
E_{a b} \mapsto E_{a b} \otimes 1+\sum_{i=1}^{n} 1 \otimes x_{a i} \partial_{b i}
$$

For $E=\left[E_{a b}\right]_{a, b=1}^{m}$ take matrix inverse $(u+E)^{-1}=\left[X_{a b}(u)\right]_{a, b=1}^{m}$
Theorem (Arakawa - Suzuki-Tsuchiya):
(i) a homomorphism $\mathrm{Y}\left(\mathfrak{g l}_{n}\right) \rightarrow \mathrm{A}^{\mathfrak{g l}_{m}}$ is defined by

$$
T_{i j}(u) \mapsto \delta_{i j}+\sum_{a, b=1}^{m} X_{a b}(u) \otimes x_{a i} \partial_{b j}
$$

(ii) $\mathrm{A}^{\mathfrak{g l}_{m}}$ is generated by $U\left(\mathfrak{g l}_{m}\right)^{\mathfrak{g l}_{m}} \otimes 1$ and the image of $\mathrm{Y}\left(\mathfrak{g l}_{n}\right)$

$$
\mathcal{F}: \mathfrak{g l}_{m}-\operatorname{Mod} \rightarrow \mathfrak{g l}_{m} \times \mathrm{Y}\left(\mathfrak{g l}_{n}\right)-\text { Mod }: M \mapsto M \otimes \mathcal{G}_{m n}
$$

For $\mathrm{A}=\mathrm{U}\left(\mathfrak{s p}_{2 m}\right) \otimes \mathcal{G} \mathcal{D}_{m n}$ fix diagonal embedding $\mathrm{U}\left(\mathfrak{s p}_{2 m}\right) \rightarrow \mathrm{A}$

$$
F_{c d} \mapsto F_{c d} \otimes 1+1 \otimes\left(-\delta_{c d} n / 2+\sum_{i=1}^{n} q_{c i} p_{d i}\right)
$$

For $\mathrm{A}=\mathrm{U}\left(\mathfrak{s p}_{2 m}\right) \otimes \mathcal{G} \mathcal{D}_{m n}$ fix diagonal embedding $\mathrm{U}\left(\mathfrak{s p}_{2 m}\right) \rightarrow \mathrm{A}$

$$
F_{c d} \mapsto F_{c d} \otimes 1+1 \otimes\left(-\delta_{c d} n / 2+\sum_{i=1}^{n} q_{c i} p_{d i}\right)
$$

For $F=\left[F_{c d}\right]_{c, d=-m}^{m}$ take the inverse $(u+F)^{-1}=\left[X_{c d}(u)\right]_{c, d=-m}^{m}$

For $\mathrm{A}=\mathrm{U}\left(\mathfrak{s p}_{2 m}\right) \otimes \mathcal{G} \mathcal{D}_{m n}$ fix diagonal embedding $\mathrm{U}\left(\mathfrak{s p}_{2 m}\right) \rightarrow \mathrm{A}$

$$
F_{c d} \mapsto F_{c d} \otimes 1+1 \otimes\left(-\delta_{c d} n / 2+\sum_{i=1}^{n} q_{c i} p_{d i}\right)
$$

For $F=\left[F_{c d}\right]_{c, d=-m}^{m}$ take the inverse $(u+F)^{-1}=\left[X_{c d}(u)\right]_{c, d=-m}^{m}$
Theorem (Khoroshkin-Nazarov):
(i) a homomorphism $\mathrm{Y}\left(\mathfrak{s p}_{n}\right) \rightarrow \mathrm{A}^{\mathfrak{s p}_{2 m}}$ is defined by

$$
S_{i j}(u) \mapsto \delta_{i j}+\sum_{c, d=-m}^{m} X_{c d}\left(u-\frac{1}{2}-m\right) \otimes p_{c i} q_{d j}
$$

(ii) $\mathrm{U}\left(\mathfrak{s p}_{2 m}\right)^{\mathfrak{s p}_{2 m}} \otimes 1$ and the image of $\mathrm{Y}\left(\mathfrak{s p}_{n}\right)$ generate $\mathrm{A}^{\mathfrak{s p}_{2 m}}$

$$
\mathcal{F}: \mathfrak{s p}_{2 m}-\text { Mod } \rightarrow \mathfrak{s p}_{2 m} \times \mathrm{Y}\left(\mathfrak{s p}_{n}\right)-\mathrm{Mod}: M \mapsto M \otimes \mathcal{G}_{m n}
$$

$(\mathfrak{g}, \mathfrak{f})=\left(\mathfrak{g l}_{m}, \mathfrak{g l}_{n}\right)$ or $\left(\mathfrak{s p}_{2 m}, \mathfrak{s p}_{n}\right)$ - dual pair where $\mathfrak{g}=\mathfrak{n}+\mathfrak{h}+\mathfrak{n}^{\prime}$ $\mathcal{F}_{\lambda}: \mathfrak{g}-\operatorname{Mod} \rightarrow \mathrm{Y}(\mathfrak{f})-$ Mod $:$

$$
M \mapsto \mathcal{F}_{\lambda}(M)=\mathcal{F}(M)_{\mathfrak{n}}^{\lambda}=\left(M \otimes \mathcal{G}_{m n}\right)_{\mathfrak{n}}^{\lambda} \quad \text { for } \quad \lambda \in \mathfrak{h}^{*}
$$

$(\mathfrak{g}, \mathfrak{f})=\left(\mathfrak{g l}_{m}, \mathfrak{g l}_{n}\right)$ or $\left(\mathfrak{s p}_{2 m}, \mathfrak{s p}_{n}\right)$ - dual pair where $\mathfrak{g}=\mathfrak{n}+\mathfrak{h}+\mathfrak{n}^{\prime}$

$$
\begin{gathered}
\mathcal{F}_{\lambda}: \mathfrak{g}-\text { Mod } \rightarrow \mathrm{Y}(\mathfrak{f}) \text { - Mod : } \\
M \mapsto \mathcal{F}_{\lambda}(M)=\mathcal{F}(M)_{\mathfrak{n}}^{\lambda}=\left(M \otimes \mathcal{G}_{m n}\right)_{\mathfrak{n}}^{\lambda} \text { for } \lambda \in \mathfrak{h}^{*}
\end{gathered}
$$

Example: for $(\mathfrak{g}, \mathfrak{f})=\left(\mathfrak{g l}_{m}, \mathfrak{g l}_{n}\right)$ and $M=M_{\mu}$ - Verma module, the $\mathrm{Y}(\mathfrak{f})$-module $\mathcal{F}_{\lambda}\left(M_{\mu}\right)$ is equivalent to the tensor product

$$
\Lambda_{\mu_{1}}^{\lambda_{1}-\mu_{1}} \otimes \Lambda_{\mu_{2}-1}^{\lambda_{2}-\mu_{2}} \otimes \ldots \otimes \Lambda_{\mu_{m}-m+1}^{\lambda_{m}-\mu_{m}}
$$

$\left(\lambda_{1}, \ldots, \lambda_{m}\right)$ and $\left(\mu_{1}, \ldots, \mu_{m}\right)$ - labels of the weights $\lambda, \mu \in \mathfrak{h}^{*}$; $\wedge_{z}^{d}=d$-th exterior power of $\mathbb{C}^{n}=$ subspace in \mathcal{G}_{n} of degree d $\mathrm{Y}\left(\mathfrak{g l}_{n}\right)$-action defined by $T_{i j}(u) \mapsto \delta_{i j}+x_{i} \partial_{j} /(u+z)$ for $z \in \mathbb{C}$; assuming that $\Lambda_{z}^{d}=\{0\}$ if $d \neq 0,1,2, \ldots$

Let $\lambda, \mu \in \mathfrak{h}^{*}$ vary so that the difference $\lambda-\mu$ is fixed
Let λ be generic, that is $\lambda\left(H_{\alpha}\right) \notin \mathbb{Z}$ for all $\alpha \in \Delta^{+}$

Let $\lambda, \mu \in \mathfrak{h}^{*}$ vary so that the difference $\lambda-\mu$ is fixed
Let λ be generic, that is $\lambda\left(H_{\alpha}\right) \notin \mathbb{Z}$ for all $\alpha \in \Delta^{+}$
Proposition: λ-generic $\Rightarrow \mathrm{Y}(\mathfrak{f})$-module $\mathcal{F}_{\lambda}\left(M_{\mu}\right)$ is irreducible

Let $\lambda, \mu \in \mathfrak{h}^{*}$ vary so that the difference $\lambda-\mu$ is fixed
Let λ be generic, that is $\lambda\left(H_{\alpha}\right) \notin \mathbb{Z}$ for all $\alpha \in \Delta^{+}$
Proposition: λ-generic $\Rightarrow \mathrm{Y}(\mathfrak{f})$-module $\mathcal{F}_{\lambda}\left(M_{\mu}\right)$ is irreducible
The algebra $\overline{\mathrm{Z}}$ acts on $\mathcal{F}\left(M_{\mu}\right)_{\mathfrak{n}}$ via the isomorphism $\overline{\mathrm{Z}} \rightarrow \overline{\mathrm{R}}$
The subalgebra $\bar{Z}^{\mathfrak{h}} \subset \overline{\mathrm{Z}}$ acts on $\mathcal{F}\left(M_{\mu}\right)_{\mathfrak{n}}^{\lambda}=\mathcal{F}_{\lambda}\left(M_{\mu}\right)$
σ_{0} - the longest element in the Weyl group \mathfrak{S} of \mathfrak{g}
$\check{\xi}_{0}=\check{\xi}_{\sigma}$ for $\sigma=\sigma_{0}$ - Zhelobenko automorphism of the algebra $\overline{\mathrm{Z}}$

Let $\lambda, \mu \in \mathfrak{h}^{*}$ vary so that the difference $\lambda-\mu$ is fixed
Let λ be generic, that is $\lambda\left(H_{\alpha}\right) \notin \mathbb{Z}$ for all $\alpha \in \Delta^{+}$
Proposition: λ-generic $\Rightarrow \mathrm{Y}(\mathfrak{f})$-module $\mathcal{F}_{\lambda}\left(M_{\mu}\right)$ is irreducible
The algebra $\overline{\mathrm{Z}}$ acts on $\mathcal{F}\left(M_{\mu}\right)_{\mathfrak{n}}$ via the isomorphism $\overline{\mathrm{Z}} \rightarrow \overline{\mathrm{R}}$
The subalgebra $\bar{Z}^{\mathfrak{h}} \subset \overline{\mathrm{Z}}$ acts on $\mathcal{F}\left(M_{\mu}\right)_{\mathfrak{n}}^{\lambda}=\mathcal{F}_{\lambda}\left(M_{\mu}\right)$
σ_{0} - the longest element in the Weyl group \mathfrak{S} of \mathfrak{g}
$\check{\xi}_{0}=\check{\xi}_{\sigma}$ for $\sigma=\sigma_{0}$ - Zhelobenko automorphism of the algebra $\overline{\mathrm{Z}}$
Proposition (Tarasov - Varchenko, Khoroshkin - Nazarov):
for generic λ the automorphism $\check{\xi}_{0}$ determines an intertwiner

$$
\mathcal{F}_{\lambda}\left(M_{\mu}\right) \rightarrow \mathcal{F}_{\lambda}\left(M_{\mu}\right)^{*}
$$

of $\mathrm{Y}(\mathfrak{f})$-modules, where $\mathcal{F}_{\lambda}\left(M_{\mu}\right)^{*}$ is the dual module to $\mathcal{F}_{\lambda}\left(M_{\mu}\right)$

Example: for $(\mathfrak{g}, \mathfrak{f})=\left(\mathfrak{g l}_{m}, \mathfrak{g l}_{n}\right)$ and any λ, μ the $\mathrm{Y}(\mathfrak{f})$-module
$\mathcal{F}_{\lambda}\left(M_{\mu}\right)^{*} \cong \Lambda_{\mu_{m}-m+1}^{\lambda_{m}-\mu_{m}} \otimes \ldots \otimes \Lambda_{\mu_{2}-1}^{\lambda_{2}-\mu_{2}} \otimes \Lambda_{\mu_{1}}^{\lambda_{1}-\mu_{1}} \cong \mathcal{F}_{\sigma_{0} \circ \lambda}\left(M_{\sigma_{0} \circ \mu}\right)$

Example: for $(\mathfrak{g}, \mathfrak{f})=\left(\mathfrak{g l}_{m}, \mathfrak{g l}_{n}\right)$ and any λ, μ the $\mathrm{Y}(\mathfrak{f})$-module
$\mathcal{F}_{\lambda}\left(M_{\mu}\right)^{*} \cong \Lambda_{\mu_{m}-m+1}^{\lambda_{m}-\mu_{m}} \otimes \ldots \otimes \Lambda_{\mu_{2}-1}^{\lambda_{2}-\mu_{2}} \otimes \Lambda_{\mu_{1}}^{\lambda_{1}-\mu_{1}} \cong \mathcal{F}_{\sigma_{0} \circ \lambda}\left(M_{\sigma_{0} \circ \mu}\right)$
$Y(\mathfrak{f}) \supset X(\mathfrak{f})$ - subalgebra such that $Y(\mathfrak{f}) \cong X(\mathfrak{f}) \otimes$ centre of $Y(\mathfrak{f})$

Example: for $(\mathfrak{g}, \mathfrak{f})=\left(\mathfrak{g l}_{m}, \mathfrak{g l}_{n}\right)$ and any λ, μ the $\mathrm{Y}(\mathfrak{f})$-module
$\mathcal{F}_{\lambda}\left(M_{\mu}\right)^{*} \cong \Lambda_{\mu_{m}-m+1}^{\lambda_{m}-\mu_{m}} \otimes \ldots \otimes \Lambda_{\mu_{2}-1}^{\lambda_{2}-\mu_{2}} \otimes \Lambda_{\mu_{1}}^{\lambda_{1}-\mu_{1}} \cong \mathcal{F}_{\sigma_{0} \circ \lambda}\left(M_{\sigma_{0} \circ \mu}\right)$
$Y(\mathfrak{f}) \supset X(\mathfrak{f})$ - subalgebra such that $Y(\mathfrak{f}) \cong X(\mathfrak{f}) \otimes$ centre of $Y(\mathfrak{f})$
Let $\lambda+\rho$ be dominant, that is $(\lambda+\rho)\left(H_{\alpha}\right) \neq-1,-2, \ldots$ for $\alpha \in \Delta^{+}$

Example: for $(\mathfrak{g}, \mathfrak{f})=\left(\mathfrak{g l}_{m}, \mathfrak{g l}_{n}\right)$ and any λ, μ the $\mathrm{Y}(\mathfrak{f})$-module $\mathcal{F}_{\lambda}\left(M_{\mu}\right)^{*} \cong \Lambda_{\mu_{m}-m+1}^{\lambda_{m}-\mu_{m}} \otimes \ldots \otimes \Lambda_{\mu_{2}-1}^{\lambda_{2}-\mu_{2}} \otimes \Lambda_{\mu_{1}}^{\lambda_{1}-\mu_{1}} \cong \mathcal{F}_{\sigma_{0} \circ \lambda}\left(M_{\sigma_{0} \circ \mu}\right)$
$Y(f) \supset X(f)$ - subalgebra such that $Y(f) \cong X(f) \otimes$ centre of $Y(f)$
Let $\lambda+\rho$ be dominant, that is $(\lambda+\rho)\left(H_{\alpha}\right) \neq-1,-2, \ldots$ for $\alpha \in \Delta^{+}$
Theorem (Khoroshkin-Nazarov):
(i) the automorphism $\check{\xi}_{0}$ of \bar{Z} determines $\mathrm{Y}(\mathfrak{f})$-intertwiner

$$
\mathcal{F}_{\lambda}\left(M_{\mu}\right) \rightarrow \mathcal{F}_{\lambda}\left(M_{\mu}\right)^{*}
$$

(ii) the image of this intertwiner is non-zero and $\mathrm{Y}(\mathrm{f})$-irreducible
(iii) up to an action of the centre of $\mathrm{Y}(\mathfrak{f})$, every irreducible finite-dimensional $\mathrm{Y}(\mathfrak{f})$-module arises from (ii) for some λ, μ

Remarks:

Remarks:

- the proof of (ii) uses the surjectivity of γ for $\mathrm{A}=\mathrm{U}(\mathfrak{g}) \otimes \mathcal{G} \mathcal{D}_{m n}$

Remarks:

- the proof of (ii) uses the surjectivity of γ for $\mathrm{A}=\mathrm{U}(\mathfrak{g}) \otimes \mathcal{G} \mathcal{D}_{m n}$
- when both λ and μ are dominant, (ii) for $\mathfrak{f}=\mathfrak{g l}_{n}, \mathfrak{s p}_{n}$ was known before (Cherednik, Nazarov)

Remarks:

- the proof of (ii) uses the surjectivity of γ for $\mathrm{A}=\mathrm{U}(\mathfrak{g}) \otimes \mathcal{G} \mathcal{D}_{m n}$
- when both λ and μ are dominant, (ii) for $\mathfrak{f}=\mathfrak{g l}_{n}, \mathfrak{s p}_{n}$ was known before (Cherednik, Nazarov)
- when $\lambda+\rho$ is dominant and μ is arbitrary, (ii) for $\mathfrak{f}=\mathfrak{g l}_{n}$ was a conjecture (Cherednik) proved by using the crystal bases (Akasaka - Kashiwara) or the Drinfeld generators of $\mathrm{Y}\left(\mathfrak{g l}_{n}\right)$ (Nazarov-Tarasov)

Remarks:

- the proof of (ii) uses the surjectivity of γ for $\mathrm{A}=\mathrm{U}(\mathfrak{g}) \otimes \mathcal{G} \mathcal{D}_{m n}$
- when both λ and μ are dominant, (ii) for $\mathfrak{f}=\mathfrak{g l}_{n}, \mathfrak{s p}_{n}$ was known before (Cherednik, Nazarov)
- when $\lambda+\rho$ is dominant and μ is arbitrary, (ii) for $\mathfrak{f}=\mathfrak{g l}_{n}$ was a conjecture (Cherednik) proved by using the crystal bases (Akasaka - Kashiwara) or the Drinfeld generators of $\mathrm{Y}\left(\mathfrak{g l}_{n}\right)$ (Nazarov-Tarasov)
- the intertwiner from (i) can be written down explicitly

Remarks:

- the proof of (ii) uses the surjectivity of γ for $\mathrm{A}=\mathrm{U}(\mathfrak{g}) \otimes \mathcal{G} \mathcal{D}_{m n}$
- when both λ and μ are dominant, (ii) for $\mathfrak{f}=\mathfrak{g l}_{n}, \mathfrak{s p}_{n}$ was known before (Cherednik, Nazarov)
- when $\lambda+\rho$ is dominant and μ is arbitrary, (ii) for $\mathfrak{f}=\mathfrak{g l}_{n}$ was a conjecture (Cherednik) proved by using the crystal bases (Akasaka - Kashiwara) or the Drinfeld generators of $\mathrm{Y}\left(\mathfrak{g l}_{n}\right)$ (Nazarov-Tarasov)
- the intertwiner from (i) can be written down explicitly
- (i,iii,iii) extend to the dual pair $\left(\mathfrak{s o}_{2 m}, O_{n}\right)$ on $\mathcal{G}_{m n}$

Remarks:

- the proof of (ii) uses the surjectivity of γ for $\mathrm{A}=\mathrm{U}(\mathfrak{g}) \otimes \mathcal{G} \mathcal{D}_{m n}$
- when both λ and μ are dominant, (ii) for $\mathfrak{f}=\mathfrak{g l}_{n}, \mathfrak{s p}_{n}$ was known before (Cherednik, Nazarov)
- when $\lambda+\rho$ is dominant and μ is arbitrary, (ii) for $\mathfrak{f}=\mathfrak{g l}_{n}$ was a conjecture (Cherednik) proved by using the crystal bases (Akasaka - Kashiwara) or the Drinfeld generators of $\mathrm{Y}\left(\mathfrak{g l}_{n}\right)$ (Nazarov-Tarasov)
- the intertwiner from (i) can be written down explicitly
- (i,ii,iii) extend to the dual pair $\left(\mathfrak{s o}_{2 m}, O_{n}\right)$ on $\mathcal{G}_{m n}$
- (i,ii) also extend to the dual pairs $\left(\mathfrak{g l}_{m}, \mathfrak{g l}_{n}\right)$ and $\left(\mathfrak{s p}_{2 m}, O_{n}\right)$, $\left(\mathfrak{s o}_{2 m}, \mathfrak{s p}_{n}\right)$ on the space of polynomials in $m n$ commuting variables; the last two dual pairs arise (Howe) from the Weil representation of the real symplectic group $S p_{2 m n}$

