Representations of Yangians via Howe duality

Maxim Nazarov

Department of Mathematics, University of York

In honour of Vitaly Tarasov and Alexander Varchenko

References:

- Etingof Varchenko (2002)
 Dynamical Weyl groups and applications
- Felder Markov Tarasov Varchenko (2000)
 Differential equations compatible with KZ equations
- Tarasov Varchenko (2002)
 Duality for Knizhnik-Zamolodchikov and dynamical equations

 \mathfrak{g} - complex semisimple Lie algebra, $\mathfrak{g} = \mathfrak{n} + \mathfrak{h} + \mathfrak{n}'$

$$\Delta^+$$
 - set of positive roots of \mathfrak{g} , $\rho = \frac{1}{2} \sum_{\alpha \in \Delta^+} \alpha$

 $\mathfrak S$ - Weyl group of $\mathfrak g$ with shifted action on $\mathfrak h^*$

$$\sigma \circ \lambda = \sigma(\lambda + \rho) - \rho$$
 for $\sigma \in \mathfrak{S}$ and $\lambda \in \mathfrak{h}^*$

 $U(\mathfrak{h}) \ni X$ - polynomial function on \mathfrak{h}^*

$$X \mapsto \sigma \circ X$$
 - shifted action of $\sigma \in \mathfrak{S}$ on U(\mathfrak{h})

$$(\sigma \circ X)(\lambda) = X(\sigma^{-1} \circ \lambda)$$
 for $\lambda \in \mathfrak{h}^*$

$$\gamma: \mathsf{U}(\mathfrak{g}) \to \mathsf{U}(\mathfrak{g})/(\mathfrak{n}\,\mathsf{U}(\mathfrak{g})+\mathsf{U}(\mathfrak{g})\,\mathfrak{n}') \cong \mathsf{U}(\mathfrak{h})$$
 - canonical projection

 \mathfrak{g} - complex semisimple Lie algebra, $\mathfrak{g} = \mathfrak{n} + \mathfrak{h} + \mathfrak{n}'$

$$\Delta^+$$
 - set of positive roots of \mathfrak{g} , $\rho=rac{1}{2}\sum_{\alpha\in\Delta^+}\alpha$

 $\mathfrak S$ - Weyl group of $\mathfrak g$ with shifted action on $\mathfrak h^*$

$$\sigma \circ \lambda = \sigma(\lambda + \rho) - \rho$$
 for $\sigma \in \mathfrak{S}$ and $\lambda \in \mathfrak{h}^*$

 $U(\mathfrak{h}) \ni X$ - polynomial function on \mathfrak{h}^*

$$X \mapsto \sigma \circ X$$
 - shifted action of $\sigma \in \mathfrak{S}$ on $U(\mathfrak{h})$

$$(\sigma \circ X)(\lambda) = X(\sigma^{-1} \circ \lambda)$$
 for $\lambda \in \mathfrak{h}^*$

$$\gamma: \mathsf{U}(\mathfrak{g}) \to \mathsf{U}(\mathfrak{g})/(\mathfrak{n}\,\mathsf{U}(\mathfrak{g})+\mathsf{U}(\mathfrak{g})\,\mathfrak{n}') \cong \mathsf{U}(\mathfrak{h})$$
 - canonical projection

Theorem (Harish-Chandra): $U(\mathfrak{g})^{\mathfrak{g}} \xrightarrow{\sim} U(\mathfrak{h})^{\mathfrak{S}}$

 $U(\mathfrak{g}) \subset A$ - associative algebra with subspace $V \subset A$ such that

(i) multiplication map $U(\mathfrak{g}) \otimes V \to A : X \otimes Y \mapsto X Y$ is bijective (ii) $V \subset A$ is invariant and locally finite under adjoint action of \mathfrak{g}

 $A\supset \mathsf{Norm}(\mathfrak{n} A)$ - normalizer of the right ideal $\mathfrak{n}\, A\subset A$

$$Y \in \mathsf{Norm}(\mathfrak{n} A) \iff Y \cdot \mathfrak{n} A \subset \mathfrak{n} A$$

 $R = \mathsf{Norm}(\mathfrak{n}\,A) \, / \, (\mathfrak{n}\,A)$ - the Mickelsson algebra of the pair (A,\mathfrak{g})

 $U(\mathfrak{g}) \subset A$ - associative algebra with subspace $V \subset A$ such that

(i) multiplication map $U(\mathfrak{g}) \otimes V \to A: X \otimes Y \mapsto X Y$ is bijective

(ii) $V \subset A$ is invariant and locally finite under adjoint action of ${\mathfrak g}$

 $A \supset \mathsf{Norm}(\mathfrak{n}A)$ - normalizer of the right ideal $\mathfrak{n}\,A \subset A$

$$Y \in \mathsf{Norm}(\mathfrak{n}\, A) \iff Y \cdot \mathfrak{n}\, A \subset \mathfrak{n}\, A$$

 $R=\text{Norm}(\mathfrak{n}\,A)\,/\,(\mathfrak{n}\,A)$ - the Mickelsson algebra of the pair (A,\mathfrak{g})

N - arbitrary left A-module

R acts on the space of coinvariants $N_n = N/(n N)$

 $\Delta^+ \ni \alpha_1, \dots, \alpha_r$ - simple positive roots where $r = \operatorname{rank} \mathfrak{g}$

 $\mathfrak{n}'\ni E_c,\ \mathfrak{n}\ni F_c,\ \mathfrak{h}\ni H_c$ for $c=1,\ldots,r$ - Chevalley generators

 $H_{\alpha} = \alpha^{\vee} \in \mathfrak{h}$ - coroot vector for any positive root $\alpha \in \Delta^+$

$$H_{\alpha}=\alpha^{\vee}\in\mathfrak{h}$$
 - coroot vector for any positive root $\alpha\in\Delta^{\vee}$
 E_{α} and F_{α} - Cartan-Weyl basis elements of \mathfrak{n}' and \mathfrak{n}

$$\alpha = \alpha_{c} \implies \mathsf{E}_{\alpha} = \mathsf{E}_{c}, \mathsf{F}_{\alpha} = \mathsf{F}_{c}, \mathsf{H}_{\alpha} = \mathsf{H}_{c}$$

 $\Delta^+ \ni \alpha_1, \dots, \alpha_r$ - simple positive roots where $r = \operatorname{rank} \mathfrak{g}$

 $\mathfrak{n}'\ni E_c,\ \mathfrak{n}\ni F_c,\ \mathfrak{h}\ni H_c$ for $c=1,\ldots,r$ - Chevalley generators

 $H_{\alpha}=\alpha^{\vee}\in\mathfrak{h}$ - coroot vector for any positive root $\alpha\in\Delta^{+}$

 ${\it E}_{\alpha}$ and ${\it F}_{\alpha}$ - Cartan-Weyl basis elements of ${\mathfrak n}'$ and ${\mathfrak n}$

 $\alpha \in \Delta^+$

$$\alpha = \alpha_c \implies \mathsf{E}_{\alpha} = \mathsf{E}_{c}, \mathsf{F}_{\alpha} = \mathsf{F}_{c}, \mathsf{H}_{\alpha} = \mathsf{H}_{c}$$

$$P_{\alpha} = \sum_{s=0}^{\infty} \frac{(-1)^{s}}{s! \left(H_{\alpha} + \rho(H_{\alpha}) + 1\right) \dots \left(H_{\alpha} + \rho(H_{\alpha}) + s\right)} F_{\alpha}^{s} E_{\alpha}^{s}$$

$$P = \prod_{\alpha=0}^{\infty} P_{lpha}$$
 - extremal projector for ${\mathfrak g}$

 $\Delta^+
i \alpha_1,\ldots,\alpha_r$ - simple positive roots where $r=\operatorname{rank}\mathfrak{g}$

 $\mathfrak{n}'\ni E_c,\ \mathfrak{n}\ni F_c,\ \mathfrak{h}\ni H_c$ for $c=1,\ldots,r$ - Chevalley generators

 $H_{\alpha}=\alpha^{\vee}\in\mathfrak{h}$ - coroot vector for any positive root $\alpha\in\Delta^+$ E_{α} and F_{α} - Cartan-Weyl basis elements of \mathfrak{n}' and \mathfrak{n}

$$\alpha = \alpha_c \implies E_\alpha = E_c, F_\alpha = F_c, H_\alpha = H_c$$

$$P_{\alpha} = \sum_{s=0}^{\infty} \frac{(-1)^{s}}{s! (H_{\alpha} + \rho(H_{\alpha}) + 1) \dots (H_{\alpha} + \rho(H_{\alpha}) + s)} F_{\alpha}^{s} E_{\alpha}^{s}$$

$$P = \prod_{lpha \in \Delta^+}^{
ightarrow} P_lpha$$
 - extremal projector for ${\mathfrak g}$

Theorem (Asherova - Smirnov - Tolstoy):

$$P^2=P$$
 and $E_{\alpha}P=PF_{\alpha}=0$ for $\alpha\in\Delta^+$

 $\overline{U(\mathfrak{h})}\subset \bar{A}$ - rings of fractions of $U(\mathfrak{h})\subset A$ with denominators set

$$\{ H_{\alpha} + z \mid \alpha \in \Delta^+, \ z \in \mathbb{Z} \} \subset \mathsf{U}(\mathfrak{h})$$

 $\mathfrak{n}\,\bar{A}$ and $\bar{A}\,\mathfrak{n}'$ - right and left ideals of the algebra \bar{A} respectively $\bar{R}=\mathsf{Norm}(\mathfrak{n}\,\bar{A})\,/\,(\mathfrak{n}\,\bar{A})$ - localized Mickelsson algebra

 $\overline{U(\mathfrak{h})}\subset \bar{A}$ - rings of fractions of $U(\mathfrak{h})\subset A$ with denominators set

$$\{ H_{\alpha} + z \mid \alpha \in \Delta^+, \ z \in \mathbb{Z} \} \subset \mathsf{U}(\mathfrak{h})$$

 $\mathfrak{n}\,\bar{A}$ and $\bar{A}\,\mathfrak{n}'$ - right and left ideals of the algebra \bar{A} respectively $\bar{R}=\mathsf{Norm}\,(\mathfrak{n}\,\bar{A})\,/\,(\mathfrak{n}\,\bar{A})$ - localized Mickelsson algebra

Proposition:

(i) $\bar{Z}=\bar{A}/(\mathfrak{n}\,\bar{A}+\bar{A}\,\mathfrak{n}')$ is a torsion-free $\overline{U(\mathfrak{h})}$ -bimodule, and an associative algebra with multiplication

$$A*B=APB$$

(ii) restriction to $\bar{R} \subset \bar{A}/(\mathfrak{n}\,\bar{A})$ of the projection $\bar{A}/(\mathfrak{n}\,\bar{A}) \to \bar{Z}$ along $\bar{A}\,\mathfrak{n}'$ is an algebra isomorphism $\bar{R} \to \bar{Z}$

 $U(\mathfrak{h}) \ni X$ - polynomial function on \mathfrak{h}^*

 $\mathfrak{S}
i \sigma_{\mathcal{C}}$ - simple reflection corresponding to $\alpha_{\mathcal{C}} \in \Delta^+$

$$\underbrace{\sigma_c \, \sigma_d \, \sigma_c \, \dots}_{m + c} = \underbrace{\sigma_d \, \sigma_c \, \sigma_d \, \dots}_{m + c} \quad \text{for} \quad c \neq d$$

 $\xi_c: A \to \bar{A}$ - linear map defined by setting for any $Y \in A$

$$\xi_c(Y) = \sum_{c=0}^{\infty} \frac{1}{s! H_c(H_c - 1) \dots (H_c - s + 1)} E_c^s \operatorname{ad}_{F_c}^s(Y)$$

 $U(\mathfrak{h}) \ni X$ - polynomial function on \mathfrak{h}^*

 $\mathfrak{S} \ni \sigma_{c}$ - simple reflection corresponding to $\alpha_{c} \in \Delta^{+}$

$$\underbrace{\sigma_{c}\,\sigma_{d}\,\sigma_{c}\,\dots}_{m_{cd}} = \underbrace{\sigma_{d}\,\sigma_{c}\,\sigma_{d}\,\dots}_{m_{cd}} \quad \text{for} \quad c \neq d$$

 $\xi_c: A \to \bar{A}$ - linear map defined by setting for any $Y \in A$

$$\xi_c(Y) = \sum_{s=0}^{\infty} \frac{1}{s! H_c(H_c - 1) \dots (H_c - s + 1)} E_c^s \operatorname{ad}_{F_c}^s(Y)$$

Proposition:

$$\xi_c(XY) \in (\sigma_c \circ X) \, \xi_c(Y) + \mathfrak{n} \, \bar{\mathbf{A}}$$

so that a linear map $\bar{\xi}_{\it c}:\bar{A}\to \bar{A}/(\mathfrak{n}\,\bar{A})$ can be defined by setting

$$\bar{\xi}_c(X|Y) = (\sigma_c \circ X) \, \xi_c(Y) + \mathfrak{n} \, \bar{A} \quad \text{ for } \quad X \in \overline{\mathsf{U}(\mathfrak{h})}$$

Proposition:

- (i) $\sigma_c(\mathfrak{n}\,\bar{\mathrm{A}})\subset\ker\bar{\xi}_c$
- (ii) $\bar{\xi}_c(\sigma_c(\bar{\mathbf{A}}\,\mathfrak{n}')) \subset \mathfrak{n}\,\bar{\mathbf{A}} + \bar{\mathbf{A}}\,\mathfrak{n}'$

Hence the Zhelobenko operator $\xi_c: \bar{Z} \to \bar{Z}$ can be defined as $\bar{\xi}_c \cdot \sigma_c$ applied to elements of \bar{A} taken modulo $\mathfrak{n}\,\bar{A} + \bar{A}\,\mathfrak{n}'$

Proposition:

- (i) $\sigma_c(\mathfrak{n}\,\bar{\mathrm{A}})\subset\ker\bar{\xi}_c$
- (ii) $\bar{\xi}_c(\sigma_c(\bar{\mathbf{A}}\,\mathfrak{n}')) \subset \mathfrak{n}\,\bar{\mathbf{A}} + \bar{\mathbf{A}}\,\mathfrak{n}'$

Hence the Zhelobenko operator $\check{\xi}_c: \bar{Z} \to \bar{Z}$ can be defined as $\bar{\xi}_c \cdot \sigma_c$ applied to elements of \bar{A} taken modulo $\mathfrak{n}\,\bar{A} + \bar{A}\,\mathfrak{n}'$

Theorem (Zhelobenko):

$$\underbrace{\xi_c \, \xi_d \, \xi_c \dots}_{m_{cd}} = \underbrace{\xi_d \, \xi_c \, \xi_d \dots}_{m_{cd}} \quad \text{for} \quad c \neq d$$

Hence for any reduced decomposition $\sigma = \sigma_{c_1} \dots \sigma_{c_k}$ in \mathfrak{S} the map

$$\check{\xi}_{\sigma} = \check{\xi}_{c_1} \ldots \check{\xi}_{c_k} : \bar{Z} \to \bar{Z}$$

does not depend on the choice of the decomposition.

 $\bar{Z}\supset\bar{Z}^{\,\mathfrak{h}}$ - invariants under adjoint action of \mathfrak{h} ; preserved by $\check{\xi}_{\sigma}$

Theorem (Khoroshkin - Ogievetsky):

- (i) $\check{\xi}_{\sigma}(A*B)=\check{\xi}_{\sigma}(A)*\check{\xi}_{\sigma}(B)$ for any $A,B\in\bar{\mathbf{Z}}$ and $\sigma\in\mathfrak{S}$
- (ii) $\check{\xi}_{\sigma} \mid \bar{Z}^{\mathfrak{h}}$ is an involution for $\sigma = \sigma_1, \ldots, \sigma_r$

We get an action of the Weyl group $\mathfrak S$ by authomorphisms of $\bar Z^\mathfrak h$

 $ar Z\supset ar Z^{\,\mathfrak h}$ - invariants under adjoint action of $\mathfrak h$; preserved by $\check \xi_\sigma$

Theorem (Khoroshkin - Ogievetsky):

(i)
$$\check{\xi}_{\sigma}(A*B)=\check{\xi}_{\sigma}(A)*\check{\xi}_{\sigma}(B)$$
 for any $A,B\in\bar{\mathbf{Z}}$ and $\sigma\in\mathfrak{S}$

(ii)
$$\check{\xi}_{\sigma} \mid \bar{\mathbf{Z}}^{\mathfrak{h}}$$
 is an involution for $\sigma = \sigma_1, \dots, \sigma_r$

We get an action of the Weyl group $\mathfrak S$ by authomorphisms of $\bar Z^\mathfrak h$

$$\gamma:\,ar{A} oar{Z}=ar{A}\,/\,(\mathfrak{n}\,ar{A}+ar{A}\,\mathfrak{n}')$$
 - canonical projection

 $Z^{\,\mathfrak{h}} \subset Z = A \, / \, (\mathfrak{n} \, A + A \, \mathfrak{n}')$ - double coset vector space

$$Q = \{ A \in Z^{\mathfrak{h}} \mid \check{\xi}_{\sigma}(A) = A \text{ for each } \sigma \in \mathfrak{S} \}$$

 $\bar{Z}\supset\bar{Z}^{\mathfrak{h}}$ - invariants under adjoint action of \mathfrak{h} ; preserved by $\check{\xi}_{\sigma}$

Theorem (Khoroshkin - Ogievetsky):

(i)
$$\check{\xi}_{\sigma}(A*B)=\check{\xi}_{\sigma}(A)*\check{\xi}_{\sigma}(B)$$
 for any $A,B\in\bar{\mathbf{Z}}$ and $\sigma\in\mathfrak{S}$

(ii)
$$\check{\xi}_{\sigma} \mid \bar{Z}^{\mathfrak{h}}$$
 is an involution for $\sigma = \sigma_1, \dots, \sigma_r$

We get an action of the Weyl group $\mathfrak S$ by authomorphisms of $\bar Z^\mathfrak h$

$$\gamma:\,\bar{A}\to\bar{Z}=\bar{A}\,/\,(\mathfrak{n}\,\bar{A}+\bar{A}\,\mathfrak{n}')$$
 - canonical projection

$$Z^{\mathfrak{h}}\subset Z=A\,/\,(\mathfrak{n}\,A+A\,\mathfrak{n}^{\,\prime})$$
 - double coset vector space

$$Q = \{ A \in Z^{\mathfrak{h}} \mid \check{\xi}_{\sigma}(A) = A \text{ for each } \sigma \in \mathfrak{S} \}$$

Theorem (Khoroshkin - Nazarov - Vinberg):

 γ maps the centralizer $A^{\mathfrak{g}}\subset A$ isomorphically onto Q

 $\bar{Z}\supset\bar{Z}^{\mathfrak{h}}$ - invariants under adjoint action of \mathfrak{h} ; preserved by $\check{\xi}_{\sigma}$

Theorem (Khoroshkin - Ogievetsky):

- (i) $\check{\xi}_{\sigma}(A*B)=\check{\xi}_{\sigma}(A)*\check{\xi}_{\sigma}(B)$ for any $A,B\in\bar{\mathbf{Z}}$ and $\sigma\in\mathfrak{S}$
- (ii) $\check{\xi}_{\sigma} \,|\, \bar{Z}^{\,\mathfrak{h}}$ is an involution for $\,\sigma = \sigma_1 \,, \ldots \,, \sigma_r \,$

We get an action of the Weyl group $\mathfrak S$ by authomorphisms of $\bar Z^\mathfrak h$

$$\gamma:\,\bar{A}\to\bar{Z}=\bar{A}\,/\,(\mathfrak{n}\,\bar{A}+\bar{A}\,\mathfrak{n}^{\,\prime})$$
 - canonical projection

$$Z^{\,\mathfrak{h}} \subset Z = A \, / \, (\mathfrak{n} \, A + A \, \mathfrak{n}^{\, \prime})$$
 - double coset vector space

$$Q = \{ A \in Z^{\mathfrak{h}} \mid \check{\xi}_{\sigma}(A) = A \text{ for each } \sigma \in \mathfrak{S} \}$$

Theorem (Khoroshkin - Nazarov - Vinberg):

 γ maps the centralizer $A^{\mathfrak{g}}\subset A$ isomorphically onto Q

Example: if $A = U(\mathfrak{g})$ then γ is the Harish-Chandra isomorphism

Yangian $Y(\mathfrak{gl}_n)$ - associative algebra generated by $T_{ij}^{(a)}$ where i,j=1,...,n and a=1,2,...

$$T_{ij}(u) = \delta_{ij} + T_{ii}^{(1)}u^{-1} + T_{ii}^{(2)}u^{-2} + \ldots \in Y(\mathfrak{gl}_n)[[u^{-1}]].$$

$$E_{ii}$$
 - $n \times n$ matrix units; $1_n = E_{11} + ... + E_{nn}$ - identity matrix

$$T_1(u) = T(u) \otimes 1_n$$
 and $T_2(v) = 1_n \otimes T(v)$.

$$R(u) = u - \sum_{i=1}^{n} E_{ij} \otimes E_{ji}$$
 - Yang *R*-matrix

Relations in $Y(\mathfrak{gl}_n)$ are written the as $n^2 \times n^2$ matrix equation

$$R(u-v) T_1(u) T_2(v) = T_2(v) T_1(u) R(u-v)$$
.

Yangian $Y(\mathfrak{gl}_n)$ - associative algebra generated by $T_{ij}^{(a)}$ where i, j = 1, ..., n and a = 1, 2, ...

$$T_{ij}(u) = \delta_{ij} + T_{ii}^{(1)}u^{-1} + T_{ii}^{(2)}u^{-2} + \ldots \in Y(\mathfrak{gl}_n)[[u^{-1}]].$$

 E_{ii} - $n \times n$ matrix units; $1_n = E_{11} + ... + E_{nn}$ - identity matrix

$$T_1(u) = T(u) \otimes 1_n$$
 and $T_2(v) = 1_n \otimes T(v)$.

$$R(u) = u - \sum_{i=1}^{n} E_{ij} \otimes E_{ji}$$
 - Yang *R*-matrix

Relations in $Y(gl_n)$ are written the as $n^2 \times n^2$ matrix equation

$$R(u-v) T_1(u) T_2(v) = T_2(v) T_1(u) R(u-v)$$
.

$$Y(\mathfrak{gl}_n)$$
 - Hopf algebra : $T_{ij}(u)\mapsto \sum_{i=1}^n T_{ik}(u)\otimes T_{kj}(u)$ - comultiplication

Twisted Yangian $Y(\mathfrak{sp}_n)$ - subalgebra of $Y(\mathfrak{gl}_n)$ generated by $S_{ij}^{(a)}$

$$S_{ij}(u) = \delta_{ij} + S_{ij}^{(1)}u^{-1} + S_{ij}^{(2)}u^{-2} + \dots$$

 $S(u) = T^{t}(-u)T(u)$

 t - transposition relative to the form $\langle\;,\;
angle$ on \mathbb{C}^n fixed by $\mathfrak{sp}_n\subset\mathfrak{gl}_n$

 $\widetilde{R}(u)$ - transpose of R(u) relative to $\langle \; , \; \rangle$ in either tensor factor

$$S_1(u) = S(u) \otimes 1_n$$
 and $S_2(v) = 1_n \otimes S(v)$.

Relations in $Y(\mathfrak{sp}_n)$ can be written as the matrix equations

$$R(u-v) S_1(u) \widetilde{R}(-u-v) S_2(v) = S_2(v) \widetilde{R}(-u-v) S_1(u) R(u-v)$$

$$S^{t}(u) = S(-u) - \frac{S(u) - S(-u)}{2u}$$

 $\text{deg } T_{ii}^{(a)} = a-1 \text{ for } a=1,2,... \text{ defines ascending filtration on } Y(\mathfrak{gl}_n)$ $\mathfrak{gl}_n[u] = \mathfrak{gl}_n + \mathfrak{gl}_n \cdot u + \mathfrak{gl}_n \cdot u^2 + \dots$ - polynomial current Lie algebra

 $T_{ii}^{(a)}\mapsto E_{ij}\,u^{a-1}$ Hopf algebra isomorphism $\operatorname{gr} \mathsf{Y}(\mathfrak{gl}_n)\to \mathsf{U}(\mathfrak{gl}_n[u])$

Proposition (Drinfeld):

 $\deg T_{ii}^{(a)} = a-1$ for a=1,2,... defines ascending filtration on $Y(\mathfrak{gl}_n)$ $\mathfrak{gl}_n[u] = \mathfrak{gl}_n + \mathfrak{gl}_n \cdot u + \mathfrak{gl}_n \cdot u^2 + \dots$ - polynomial current Lie algebra

Proposition (Drinfeld):
$$T^{(a)} = F \cdot u^{a-1} \text{ Honf elgebra isomorphism or } V(x(x)) = V(x(x))$$

Proposition (Drinfeld):
$$T_{ij}^{(a)}\mapsto E_{ij}\,u^{a-1} \text{ Hopf algebra isomorphism gr}\,\mathsf{Y}(\mathfrak{gl}_n)\to\mathsf{U}(\mathfrak{gl}_n[u])$$

$$T^{(a)}_{ij}\mapsto E_{ij}\,u^{a-1}$$
 Hopf algebra isomorphism $\operatorname{gr}\operatorname{Y}(\mathfrak{gl}_n)\to\operatorname{U}(\mathfrak{gl}_n[u])$

 $\mathfrak{gl}_n[u] \supset \mathfrak{t}$ - twisted polynomial current Lie algebra relative to $\langle \cdot, \cdot \rangle$

 $\mathfrak{t} = \{ X(u) \in \mathfrak{al}_n[u] \mid X(-u) = -X^t(u) \}$

 $\deg S_{ii}^{(a)} = a - 1$ for a = 1, 2, ... defines ascending filtration on $Y(\mathfrak{sp}_n)$

deg $T_{ij}^{(a)} = a - 1$ for a = 1, 2, ... defines ascending filtration on $Y(\mathfrak{gl}_n)$ $\mathfrak{gl}_n[u] = \mathfrak{gl}_n + \mathfrak{gl}_n \cdot u + \mathfrak{gl}_n \cdot u^2 + ...$ - polynomial current Lie algebra

Proposition (Drinfeld):

$$T^{(a)}_{ij}\mapsto E_{ij}\,u^{a-1}$$
 Hopf algebra isomorphism $\operatorname{gr} \mathsf{Y}(\mathfrak{gl}_n) \to \mathsf{U}(\mathfrak{gl}_n[u])$

 $\deg S_{ij}^{(a)} = a-1 \text{ for } a=1,2,... \text{ defines ascending filtration on } Y(\mathfrak{sp}_n)$ $\mathfrak{gl}_n[u] \supset \mathfrak{t} \text{ - twisted polynomial current Lie algebra relative to } \langle \; , \; \rangle$

$$\mathfrak{t} = \{ X(u) \in \mathfrak{gl}_n[u] \mid X(-u) = -X^t(u) \}$$

Proposition (Olshanski):

- (i) $S_{ij}^{(a)} \mapsto E_{ij} u^{a-1} E_{ij}^t (-u)^{a-1}$ isomorphism gr $Y(\mathfrak{sp}_n) \to U(\mathfrak{t})$
- (ii) comultiplication $Y(\mathfrak{sp}_n) \to Y(\mathfrak{sp}_n) \otimes Y(\mathfrak{gl}_n) \neq Y(\mathfrak{sp}_n)^{\otimes 2}$

 \mathcal{G}_{mn} - Grassmann algebra of $\mathbb{C}^{mn}=\mathbb{C}^m\otimes\mathbb{C}^n$ generated by x_{ai}

$$a = 1, \ldots, m$$
 and $i = 1, \ldots, n$

$$X_{ai} X_{bj} = -X_{bj} X_{ai}$$

 ∂_{ai} - left derivation (inner multiplication) in \mathcal{G}_{mn} relative to x_{ai}

 \mathcal{G}_{mn} - Grassmann algebra of $\mathbb{C}^{mn}=\mathbb{C}^m\otimes\mathbb{C}^n$ generated by x_{ai}

$$a = 1, ..., m$$
 and $i = 1, ..., n$

$$x_{ai} x_{bj} = -x_{bj} x_{ai}$$

 ∂_{ai} - left derivation (inner multiplication) in \mathcal{G}_{mn} relative to x_{ai}

 \mathcal{GD}_{mn} - associative algebra generated by left multiplications by x_{ai} and left derivations ∂_{bj} acting on \mathcal{G}_{mn}

$$U(\mathfrak{gl}_n) \to \mathcal{GD}_{mn}: E_{ij} \mapsto \sum_{a=1}^m x_{ai} \, \partial_{aj}$$
 - natural action of \mathfrak{gl}_n on \mathcal{G}_{mn}

$$U(\mathfrak{gl}_m) \to \mathcal{GD}_{mn}: E_{ab} \mapsto \sum_{i=1}^n x_{ai} \, \partial_{bi}$$
 - natural action of \mathfrak{gl}_m on \mathcal{G}_{mn}

 \mathcal{G}_{mn} - Grassmann algebra of $\mathbb{C}^{mn}=\mathbb{C}^m\otimes\mathbb{C}^n$ generated by x_{ai}

$$a = 1, ..., m$$
 and $i = 1, ..., n$

$$X_{ai} X_{bj} = -X_{bj} X_{ai}$$

 ∂_{ai} - left derivation (inner multiplication) in \mathcal{G}_{mn} relative to x_{ai}

 \mathcal{GD}_{mn} - associative algebra generated by left multiplications by x_{ai} and left derivations ∂_{bj} acting on \mathcal{G}_{mn}

$$\mathsf{U}(\mathfrak{gl}_n) o \mathcal{GD}_{mn}: \ E_{ij} \mapsto \sum_{a=1}^m x_{ai} \, \partial_{aj} \ \text{- natural action of } \mathfrak{gl}_n \text{ on } \mathcal{G}_{mn}$$

$$\mathsf{U}(\mathfrak{gl}_m) o \mathcal{GD}_{mn} : E_{ab} \mapsto \sum_{i=1}^n x_{ai} \, \partial_{bi}$$
 - natural action of \mathfrak{gl}_m on \mathcal{G}_{mn}

The images of $U(\mathfrak{gl}_m)$ and $U(\mathfrak{gl}_n)$ in \mathcal{GD}_{mn} are mutual centralizers

Choose the form \langle , \rangle whose matrix in the standard basis of \mathbb{C}^n is

$$\begin{bmatrix} 0 & & & & & 1 \\ & 0 & 1 & & \\ & & -1 & 0 & \\ -1 & & & 0 \end{bmatrix}$$

$$\left[\delta_{\tilde{i}\tilde{j}}\,\varepsilon_{i}\right]_{i,j=1}^{n}$$
 where $\tilde{i}=n-i+1$ and $\varepsilon_{i}=1,-1$ for $i\leqslant n/2,i>n/2$

 $\mathfrak{gl}_n\supset\mathfrak{sp}_n$ - spanned by $F_{ij}=E_{ij}-arepsilon_i\,arepsilon_j\,E_{\widetilde{\imath}\widetilde{\imath}}$ where $i,j=1,\ldots,n$

Choose the form $\langle \;,\; \rangle$ whose matrix in the standard basis of \mathbb{C}^n is

$$\begin{bmatrix} 0 & & & & 1 \\ & \ddots & & & \ddots \\ & & 0 & 1 & \\ & & -1 & 0 & \\ & & \ddots & & \ddots \\ -1 & & & & 0 \end{bmatrix}$$

 $\left[\delta_{\tilde{\imath}\tilde{\jmath}}\,\varepsilon_{i}\right]_{i,j=1}^{n}$ where $\tilde{\imath}=n-i+1$ and $\varepsilon_{i}=1,-1$ for $i\leqslant n/2,i>n/2$ $\mathfrak{gl}_{n}\supset\mathfrak{sp}_{n}$ - spanned by $F_{ij}=E_{ij}-\varepsilon_{i}\,\varepsilon_{j}\,E_{\tilde{\jmath}\tilde{\imath}}$ where $i,j=1,\ldots,n$ \mathfrak{sp}_{n} acts on \mathcal{G}_{mn} by restriction from \mathfrak{gl}_{n} ; for $c,d=\pm1,\ldots,\pm m$ put

$$p_{ci} = x_{-c,i}$$
 and $q_{ci} = \partial_{-c,i}$ if $c < 0$
 $p_{ci} = \varepsilon_i \, \partial_{ci}$ and $q_{ci} = \varepsilon_i \, x_{ci}$ if $c > 0$

 $\mathsf{U}(\mathfrak{sp}_n) o \mathcal{GD}_{mn}: \ \mathsf{F}_{ij} \mapsto -\, m\, \delta_{ij} \, + \sum_{n=0}^m p_{n}\, q_{n} \, -\, \mathrm{action} \ \mathrm{of} \ \mathfrak{sp}_n \ \mathrm{on} \ \mathcal{G}_{mn}$

Label the standard basis vectors in \mathbb{C}^{2m} by $-m, \ldots, -1, 1, \ldots, m$ Choose symplectic form on \mathbb{C}^{2m} with the matrix

$$\begin{bmatrix} 0 & & & & & 1 \\ & \ddots & & & \ddots \\ & & 0 & 1 & \\ & & -1 & 0 & \\ & \ddots & & \ddots & \\ -1 & & & 0 \end{bmatrix}$$

$$\mathfrak{gl}_{2m}\supset \mathfrak{sp}_{2m}$$
 - spanned by $F_{cd}=E_{cd}-\operatorname{sign}\left(c\right)\operatorname{sign}\left(d\right)E_{-d,-c}$

Label the standard basis vectors in \mathbb{C}^{2m} by $-m, \ldots, -1, 1, \ldots, m$ Choose symplectic form on \mathbb{C}^{2m} with the matrix

$$\begin{bmatrix} 0 & & & & 1 \\ & \ddots & & \ddots & \\ & & 0 & 1 & \\ & & -1 & 0 & \\ & \ddots & & \ddots & \\ -1 & & & 0 \end{bmatrix}$$

$$\mathfrak{gl}_{2m}\supset \mathfrak{sp}_{2m}$$
 - spanned by $F_{cd}=E_{cd}-\operatorname{sign}\left(c\right)\operatorname{sign}\left(d\right)E_{-d,-c}$

Theorem (Howe):

(i) The Lie algebra \mathfrak{sp}_{2m} acts on \mathcal{G}_{mn} so that

$$\mathsf{U}(\mathfrak{sp}_{2m}) o \mathcal{GD}_{mn}: \, F_{cd} \mapsto -\, \delta_{cd}\, n\,/\, 2 + \sum_{i=1}^n \, q_{ci}\, p_{di}$$

(ii) Images of $U(\mathfrak{sp}_{2m})$ and $U(\mathfrak{sp}_n)$ in \mathcal{GD}_{mn} - mutual centralizers

For $A = U(\mathfrak{gl}_m) \otimes \mathcal{GD}_{mn}$ fix diagonal embedding $U(\mathfrak{gl}_m) \to A$

$$E_{ab}\mapsto E_{ab}\otimes 1+\sum_{i=1}^n 1\otimes x_{ai}\,\partial_{bi}$$

For $A = U(\mathfrak{gl}_m) \otimes \mathcal{GD}_{mn}$ fix diagonal embedding $U(\mathfrak{gl}_m) \to A$

$$E_{ab} \mapsto E_{ab} \otimes 1 + \sum_{i=1}^{n} 1 \otimes x_{ai} \, \partial_{bi}$$

For
$$E = \begin{bmatrix} E_{ab} \end{bmatrix}_{a,b=1}^m$$
 take matrix inverse $(u+E)^{-1} = \begin{bmatrix} X_{ab}(u) \end{bmatrix}_{a,b=1}^m$

For $A=\mathsf{U}(\mathfrak{gl}_m)\otimes\mathcal{GD}_{mn}$ fix diagonal embedding $\mathsf{U}(\mathfrak{gl}_m)\to A$

$$E_{ab} \mapsto E_{ab} \otimes 1 + \sum_{i=1}^{n} 1 \otimes x_{ai} \partial_{bi}$$

For $E = [E_{ab}]_{a,b=1}^m$ take matrix inverse $(u+E)^{-1} = [X_{ab}(u)]_{a,b=1}^m$

Theorem (Arakawa - Suzuki - Tsuchiya):

(i) a homomorphism $Y(\mathfrak{gl}_n) \to A^{\mathfrak{gl}_m}$ is defined by

$$T_{ij}(u) \mapsto \delta_{ij} + \sum_{a,b=1}^{m} X_{ab}(u) \otimes X_{ai} \partial_{bj}$$

(ii) $A^{\mathfrak{gl}_m}$ is generated by $U(\mathfrak{gl}_m)^{\mathfrak{gl}_m}\otimes 1$ and the image of $Y(\mathfrak{gl}_n)$

$$\mathcal{F}: \mathfrak{gl}_m\operatorname{-Mod} o \mathfrak{gl}_m imes \mathsf{Y}(\mathfrak{gl}_n)\operatorname{-Mod}: M \mapsto M \otimes \mathcal{G}_{mn}$$

For $A = U(\mathfrak{sp}_{2m}) \otimes \mathcal{GD}_{mn}$ fix diagonal embedding $U(\mathfrak{sp}_{2m}) \to A$

$$F_{cd} \mapsto F_{cd} \otimes 1 + 1 \otimes (-\delta_{cd} n/2 + \sum_{i=1}^{n} q_{ci} p_{di})$$

For $A=U(\mathfrak{sp}_{2m})\otimes\mathcal{GD}_{mn}$ fix diagonal embedding $U(\mathfrak{sp}_{2m})\to A$

$$F_{cd} \mapsto F_{cd} \otimes 1 + 1 \otimes (-\delta_{cd} n/2 + \sum_{i=1}^{n} q_{ci} p_{di})$$

For
$$F = \begin{bmatrix} F_{cd} \end{bmatrix}_{c,d=-m}^m$$
 take the inverse $(u+F)^{-1} = \begin{bmatrix} X_{cd}(u) \end{bmatrix}_{c,d=-m}^m$

For $A = U(\mathfrak{sp}_{2m}) \otimes \mathcal{GD}_{mn}$ fix diagonal embedding $U(\mathfrak{sp}_{2m}) \to A$

$$F_{cd} \mapsto F_{cd} \otimes 1 + 1 \otimes (-\delta_{cd} n/2 + \sum_{i=1}^{n} q_{ci} p_{di})$$

For $F = [F_{cd}]_{c,d=-m}^m$ take the inverse $(u+F)^{-1} = [X_{cd}(u)]_{c,d=-m}^m$

Theorem (Khoroshkin - Nazarov):

(i) a homomorphism $Y(\mathfrak{sp}_n) \to A^{\mathfrak{sp}_{2m}}$ is defined by

$$S_{ij}(u) \mapsto \delta_{ij} + \sum_{c,d=-m}^{m} X_{cd}(u - \frac{1}{2} - m) \otimes p_{ci} q_{dj}$$

(ii) $U(\mathfrak{sp}_{2m})^{\mathfrak{sp}_{2m}} \otimes 1$ and the image of $Y(\mathfrak{sp}_n)$ generate $A^{\mathfrak{sp}_{2m}}$

$$\mathcal{F}:\,\mathfrak{sp}_{2m}\,\text{-}\,\mathsf{Mod}\,\rightarrow\,\,\mathfrak{sp}_{2m}\,\times\,\mathsf{Y}(\mathfrak{sp}_n)\,\text{-}\,\mathsf{Mod}:\,M\,\mapsto\,M\otimes\mathcal{G}_{mn}$$

 $(\mathfrak{g},\mathfrak{f})=(\mathfrak{gl}_m,\mathfrak{gl}_n)$ or $(\mathfrak{sp}_{2m},\mathfrak{sp}_n)$ - dual pair where $\mathfrak{g}=\mathfrak{n}+\mathfrak{h}+\mathfrak{n}'$

$$\mathcal{F}_{\lambda}:\,\mathfrak{g}\operatorname{\mathsf{-Mod}}\, o\,\mathsf{Y}(\mathfrak{f})\operatorname{\mathsf{-Mod}}:$$

$$M\mapsto \mathcal{F}_{\lambda}(M)=\mathcal{F}(M)^{\lambda}_{\mathfrak{n}}=(M\otimes\mathcal{G}_{mn})^{\lambda}_{\mathfrak{n}} \quad \text{for} \quad \lambda\in\mathfrak{h}^*$$

 $(\mathfrak{g},\mathfrak{f})=(\mathfrak{gl}_m,\mathfrak{gl}_n)$ or $(\mathfrak{sp}_{2m},\mathfrak{sp}_n)$ - dual pair where $\mathfrak{g}=\mathfrak{n}+\mathfrak{h}+\mathfrak{n}'$

$$\mathcal{F}_{\lambda}: \mathfrak{g} \operatorname{\mathsf{-Mod}} \to \mathsf{Y}(\mathfrak{f}) \operatorname{\mathsf{-Mod}}:$$

$$M \mapsto \mathcal{F}_{\lambda}(M) = \mathcal{F}(M)_{n}^{\lambda} = (M \otimes \mathcal{G}_{mn})_{n}^{\lambda}$$
 for $\lambda \in \mathfrak{h}^{*}$

Example: for $(\mathfrak{g},\mathfrak{f})=(\mathfrak{gl}_m,\mathfrak{gl}_n)$ and $M=M_\mu$ - Verma module,

the $Y(\mathfrak{f})$ -module $\mathcal{F}_{\lambda}(M_{\mu})$ is equivalent to the tensor product

$$\Lambda_{\mu_1}^{\lambda_1-\mu_1}\otimes\Lambda_{\mu_2-1}^{\lambda_2-\mu_2}\otimes\ldots\otimes\Lambda_{\mu_m-m+1}^{\lambda_m-\mu_m}$$

$$(\lambda_1,\ldots,\lambda_m)$$
 and (μ_1,\ldots,μ_m) - labels of the weights $\lambda,\mu\in\mathfrak{h}^*$;

 $\Lambda_{z}^{d}=d$ -th exterior power of $\mathbb{C}^{n}=$ subspace in \mathcal{G}_{n} of degree d $Y(\mathfrak{gl}_{n})$ -action defined by $T_{ii}(u)\mapsto \delta_{ii}+x_{i}\,\partial_{i}/(u+z)$ for $z\in\mathbb{C}$;

assuming that $\Lambda_z^d = \{0\}$ if $d \neq 0, 1, 2, ...$

Let $\lambda, \mu \in \mathfrak{h}^*$ vary so that the difference $\lambda - \mu$ is fixed

Let λ be generic, that is $\lambda(H_{\alpha}) \notin \mathbb{Z}$ for all $\alpha \in \Delta^+$

Let $\lambda, \mu \in \mathfrak{h}^*$ vary so that the difference $\lambda - \mu$ is fixed Let λ be generic, that is $\lambda(H_{\alpha}) \notin \mathbb{Z}$ for all $\alpha \in \Delta^+$

Proposition: λ - generic \Rightarrow Y(\mathfrak{f})-module $\mathcal{F}_{\lambda}(M_u)$ is irreducible

Let $\lambda, \mu \in \mathfrak{h}^*$ vary so that the difference $\lambda - \mu$ is fixed Let λ be generic, that is $\lambda(H_{\alpha}) \notin \mathbb{Z}$ for all $\alpha \in \Delta^+$

Proposition: λ - generic \Rightarrow Y(\mathfrak{f})-module $\mathcal{F}_{\lambda}(M_{\mu})$ is irreducible

The algebra \bar{Z} acts on $\mathcal{F}(M_\mu)_{\mathfrak{n}}$ via the isomorphism $\bar{Z} \to \bar{R}$ The subalgebra $\bar{Z}^{\mathfrak{h}} \subset \bar{Z}$ acts on $\mathcal{F}(M_\mu)_{\mathfrak{n}}^{\lambda} = \mathcal{F}_{\lambda}(M_\mu)$ σ_0 - the longest element in the Weyl group \mathfrak{S} of \mathfrak{g} $\check{\xi}_0 = \check{\xi}_\sigma$ for $\sigma = \sigma_0$ - Zhelobenko automorphism of the algebra \bar{Z} Let $\lambda, \mu \in \mathfrak{h}^*$ vary so that the difference $\lambda - \mu$ is fixed Let λ be generic, that is $\lambda(H_{\alpha}) \notin \mathbb{Z}$ for all $\alpha \in \Delta^+$

Proposition: λ - generic \Rightarrow Y(\mathfrak{f})-module $\mathcal{F}_{\lambda}(M_{\mu})$ is irreducible

The algebra \bar{Z} acts on $\mathcal{F}(M_{\mu})_{\mathfrak{n}}$ via the isomorphism $\bar{Z} \to \bar{\mathbb{R}}$ The subalgebra $\bar{Z}^{\mathfrak{h}} \subset \bar{Z}$ acts on $\mathcal{F}(M_{\mu})_{\mathfrak{n}}^{\lambda} = \mathcal{F}_{\lambda}(M_{\mu})$ σ_0 - the longest element in the Weyl group \mathfrak{S} of \mathfrak{g} $\check{\xi}_0 = \check{\xi}_{\sigma}$ for $\sigma = \sigma_0$ - Zhelobenko automorphism of the algebra \bar{Z}

Proposition (Tarasov - Varchenko, Khoroshkin - Nazarov): for generic λ the automorphism ξ_0 determines an intertwiner

$$\mathcal{F}_{\lambda}(\textit{M}_{\mu})
ightarrow \mathcal{F}_{\lambda}(\textit{M}_{\mu})^{*}$$

of Y(\mathfrak{f})-modules, where $\mathcal{F}_{\lambda}(M_{\mu})^*$ is the dual module to $\mathcal{F}_{\lambda}(M_{\mu})$

$$\mathcal{F}_{\lambda}(M_{\mu})^{*} \cong \Lambda_{\mu_{m}-m+1}^{\lambda_{m}-\mu_{m}} \otimes \ldots \otimes \Lambda_{\mu_{2}-1}^{\lambda_{2}-\mu_{2}} \otimes \Lambda_{\mu_{1}}^{\lambda_{1}-\mu_{1}} \cong \mathcal{F}_{\sigma_{0}\circ\lambda}(M_{\sigma_{0}\circ\mu})$$

$$\mathcal{F}_{\lambda}(\textit{M}_{\mu})^{*} \cong \Lambda_{\mu_{m}-m+1}^{\lambda_{m}-\mu_{m}} \otimes \ldots \otimes \Lambda_{\mu_{2}-1}^{\lambda_{2}-\mu_{2}} \otimes \Lambda_{\mu_{1}}^{\lambda_{1}-\mu_{1}} \, \cong \, \mathcal{F}_{\sigma_{0} \circ \lambda}(\textit{M}_{\sigma_{0} \circ \mu})$$

 $Y(\mathfrak{f})\supset X(\mathfrak{f})$ - subalgebra such that $Y(\mathfrak{f})\cong X(\mathfrak{f})\otimes centre$ of $Y(\mathfrak{f})$

$$\mathcal{F}_{\lambda}(\textit{M}_{\mu})^{*} \cong \Lambda^{\lambda_{m}-\mu_{m}}_{\mu_{m}-m+1} \otimes \ldots \otimes \Lambda^{\lambda_{2}-\mu_{2}}_{\mu_{2}-1} \otimes \Lambda^{\lambda_{1}-\mu_{1}}_{\mu_{1}} \cong \mathcal{F}_{\sigma_{0} \circ \lambda}(\textit{M}_{\sigma_{0} \circ \mu})$$

 $Y(\mathfrak{f})\supset X(\mathfrak{f})$ - subalgebra such that $Y(\mathfrak{f})\cong X(\mathfrak{f})\otimes centre$ of $Y(\mathfrak{f})$

Let $\lambda + \rho$ be dominant, that is $(\lambda + \rho)(H_{\alpha}) \neq -1, -2, \dots$ for $\alpha \in \Delta^+$

$$\mathcal{F}_{\lambda}(M_{\mu})^{*} \cong \Lambda_{\mu_{m}-m+1}^{\lambda_{m}-\mu_{m}} \otimes \ldots \otimes \Lambda_{\mu_{2}-1}^{\lambda_{2}-\mu_{2}} \otimes \Lambda_{\mu_{1}}^{\lambda_{1}-\mu_{1}} \cong \mathcal{F}_{\sigma_{0} \circ \lambda}(M_{\sigma_{0} \circ \mu})$$

 $Y(\mathfrak{f})\supset X(\mathfrak{f})$ - subalgebra such that $Y(\mathfrak{f})\cong X(\mathfrak{f})\otimes$ centre of $Y(\mathfrak{f})$

Let $\lambda + \rho$ be dominant, that is $(\lambda + \rho)(H_{\alpha}) \neq -1, -2, \dots$ for $\alpha \in \Delta^+$

Theorem (Khoroshkin-Nazarov):

(i) the automorphism $\check{\xi}_0$ of \bar{Z} determines $Y(\mathfrak{f})$ -intertwiner

$$\mathcal{F}_{\lambda}(\textit{M}_{\mu})
ightarrow \mathcal{F}_{\lambda}(\textit{M}_{\mu})^{*}$$

- (ii) the image of this intertwiner is non-zero and $Y(\mathfrak{f})$ -irreducible
- (iii) up to an action of the centre of Y(f), every irreduciblefinite-dimensional Y(f)-module arises from (ii) for some λ, μ

• the proof of (ii) uses the surjectivity of γ for $A=\mathsf{U}(\mathfrak{g})\otimes\mathcal{GD}_{\mathit{mn}}$

- the proof of (ii) uses the surjectivity of γ for $\mathbf{A} = \mathbf{U}(\mathfrak{g}) \otimes \mathcal{GD}_{\textit{mn}}$
- when both λ and μ are dominant, (ii) for $\mathfrak{f}=\mathfrak{gl}_n$, \mathfrak{sp}_n was known before (Cherednik, Nazarov)

- the proof of (ii) uses the surjectivity of γ for $A=\mathsf{U}(\mathfrak{g})\otimes\mathcal{GD}_{\mathit{mn}}$
- when both λ and μ are dominant, (ii) for $\mathfrak{f}=\mathfrak{gl}_n$, \mathfrak{sp}_n was known before (Cherednik, Nazarov)
- when $\lambda + \rho$ is dominant and μ is arbitrary, (ii) for $\mathfrak{f} = \mathfrak{gl}_n$ was a conjecture (Cherednik) proved by using the crystal bases (Akasaka Kashiwara) or the Drinfeld generators of $Y(\mathfrak{gl}_n)$ (Nazarov Tarasov)

- the proof of (ii) uses the surjectivity of γ for $A=\mathsf{U}(\mathfrak{g})\otimes\mathcal{GD}_{\mathit{mn}}$
- when both λ and μ are dominant, (ii) for $\mathfrak{f}=\mathfrak{gl}_n$, \mathfrak{sp}_n was known before (Cherednik, Nazarov)
- when $\lambda + \rho$ is dominant and μ is arbitrary, (ii) for $\mathfrak{f} = \mathfrak{gl}_n$ was a conjecture (Cherednik) proved by using the crystal bases (Akasaka Kashiwara) or the Drinfeld generators of $Y(\mathfrak{gl}_n)$ (Nazarov Tarasov)
- the intertwiner from (i) can be written down explicitly

- the proof of (ii) uses the surjectivity of γ for $\mathbf{A} = \mathsf{U}(\mathfrak{g}) \otimes \mathcal{GD}_{\mathit{mn}}$
- when both λ and μ are dominant, (ii) for $\mathfrak{f}=\mathfrak{gl}_n$, \mathfrak{sp}_n was known before (Cherednik, Nazarov)
- when $\lambda + \rho$ is dominant and μ is arbitrary, (ii) for $\mathfrak{f} = \mathfrak{gl}_n$ was a conjecture (Cherednik) proved by using the crystal bases (Akasaka Kashiwara) or the Drinfeld generators of $Y(\mathfrak{gl}_n)$ (Nazarov Tarasov)
- the intertwiner from (i) can be written down explicitly
- (i,ii,iii) extend to the dual pair $(\mathfrak{so}_{2m}, O_n)$ on \mathcal{G}_{mn}

- the proof of (ii) uses the surjectivity of γ for $\mathbf{A} = \mathsf{U}(\mathfrak{g}) \otimes \mathcal{GD}_{\mathit{mn}}$
- when both λ and μ are dominant, (ii) for $\mathfrak{f}=\mathfrak{gl}_n$, \mathfrak{sp}_n was known before (Cherednik, Nazarov)
- when $\lambda + \rho$ is dominant and μ is arbitrary, (ii) for $\mathfrak{f} = \mathfrak{gl}_n$ was a conjecture (Cherednik) proved by using the crystal bases (Akasaka Kashiwara) or the Drinfeld generators of $Y(\mathfrak{gl}_n)$ (Nazarov Tarasov)
- the intertwiner from (i) can be written down explicitly
- (i,ii,iii) extend to the dual pair $(\mathfrak{so}_{2m}, O_n)$ on \mathcal{G}_{mn}
- (i,ii) also extend to the dual pairs $(\mathfrak{gl}_m,\mathfrak{gl}_n)$ and (\mathfrak{sp}_{2m},O_n) , $(\mathfrak{so}_{2m},\mathfrak{sp}_n)$ on the space of polynomials in mn commuting variables; the last two dual pairs arise (Howe) from the Weil representation of the real symplectic group Sp_{2mn}