Recovering a linear problem from a nonlinear problem

Akane Nakamura
joint work with Eric Rains

Representation Theory and Integrable Systems
ETH Zurich
12th August, 2019

Linear to nonlinear

We consider the Painlevé-type equations or their autonomous (=isospectral) version, the Hitchin systems.
The direction "linear to nonlinear" is well-studied.

Jimbo-Miwa-Ueno [4], Inaba-Iwasaki-Saito [3], Rains, "Generalized Hitchin systems on rational surfaces"[13], "The birational geometry of noncommutative surfaces", [14], and more...

Nonlinear to linear?

What if we do not know linear problem in advance, and only have nonlinear integrable systems? Can we recover a linear problem?

Linear (Lax) $\xlongequal[?]{\text { Isospectral,Isomonodromic }}$ Nonlinear (Hitchin, Painlevé)

Goal

We will suggest a way to recover a linear problem from a nonlinear problem for the 4-dimensional autonomous Painlevé-type systems.

Summary

For the autonomous 4-dimensional Painlevé-type equations, we can recover a linear problem from a nonlinear problem (in principle).

Extracting geometrical data from nonlinear systems

```
MARK ADLER
Pierre van moerbeke
POL VANHAECKE
```

Volume 47
Ergebnisse der Mathematik
und ihrer
Grenzgebiete
3. Folge

A Series
of Modern
Surveys
in Mathematics

> Algebraic Integrability, Painlevé Geometry and Lie Algebras
© Springer

Adler, Van Moerbeke, Vanhaecke, "Algebraic Integrablility, Painlevé Geometry, and Lie Algebras"[2]

- Kowalewski-Painlevé analysis
- compactification of the Liouville tori
- proving algebraic complete integrability
- etc.

Proposition 1 (Yoshida [16], Adler-van Moerbeke-Vanhake [2])

Suppose that V is a weight homogeneous vector field on \mathbb{C}^{n}, given by

$$
\dot{x}_{i}=f_{i}\left(x_{1}, \ldots, x_{n}\right),(i=1, \ldots, n)
$$

and suppose that

$$
x_{i}(t)=\sum_{k=0}^{\infty} x_{i}^{(k)} t^{-v_{i}+k},(i=1, \ldots, n)
$$

is a weight homogeneous Laurent solution for this vector field. Then the leading coefficients $x_{i}^{(0)}$ satisfy the non-linear algebraic equations

$$
\begin{gathered}
v_{1} x_{1}^{(0)}+f_{1}\left(x_{1}^{(0)}, \ldots, x_{n}^{(0)}\right)=0 \\
\vdots \\
v_{n} x_{n}^{(0)}+f_{n}\left(x_{1}^{(0)}, \ldots, x_{n}^{(0)}\right)=0
\end{gathered}
$$

Proposition 2 (continued)

On the other hand, the subsequent terms $x_{i}^{(k)}$ satisfy

$$
\left(k I_{n}-\mathcal{K}\left(x^{(0)}\right)\right) x^{(k)}=R^{(k)},
$$

where

$$
x^{(k)}=\left(\begin{array}{c}
x_{1}^{(k)} \\
\vdots \\
x_{n}^{(k)}
\end{array}\right), R^{(k)}=\left(\begin{array}{c}
R_{1}^{(k)} \\
\vdots \\
R_{n}^{(k)}
\end{array}\right),
$$

where each $R_{i}^{(k)}$ is a polynomial which depends on the variables $x_{1}^{(l)}, \ldots, x_{n}^{(l)}$ with $1 \leq l \leq k-1$ only. Also, the (i, j)-th entry of the $(n \times n)$-matrix \mathcal{K} is the regular function on \mathbb{C}^{n} defined by

$$
\mathcal{K}_{i, j}=\frac{\partial f_{i}}{\partial x_{j}}+v_{i} \delta_{i, j} .
$$

The eigenvalues of \mathcal{K} are called the Kowalevski exponents.

Example: The 2-dimensional first Painlevé equation

Let us consider the autonomous H_{I} given by the Hamiltonian

$$
H_{\mathrm{I}}(q, p)=p^{2}-q^{3}-s q .
$$

The Hamiltonian system is thus

$$
\dot{q}=2 p=: f_{1}, \quad \dot{p}=3 q^{2}+s=: f_{2}
$$

This is a weight-homogeneous system with the weights

$\operatorname{deg}(q, p)$	$\operatorname{deg}\left(H_{1}, s\right)$
$(2,3)$	$(6,4)$

We assume the following form of formal solutions

$$
q(t)=\sum_{k=0}^{\infty} x_{1}^{(k)} t^{-2+k}, \quad p(t)=\sum_{k=0}^{\infty} x_{2}^{(k)} t^{-3+k}
$$

The initial terms have to satisfy the following nonlinear equations

$$
2 x_{1}^{(0)}+2 x_{2}^{(0)}=0, \quad 3 x_{2}^{(0)}+3\left(x_{1}^{(0)}\right)^{2}=0 .
$$

These indicial equations have two solutions

$$
\left(x_{1}^{(0)}, x_{2}^{(0)}\right)=(0,0)=: m_{1},(1,-1)=: m_{2} .
$$

The subsequent terms can be computed by solving linear equations

$$
\left(k I_{2}-\mathcal{K}\left(x^{(0)}\right)\right)\binom{x_{1}^{(k)}}{x_{2}^{(k)}}=\binom{R_{1}^{(k)}}{R_{2}^{(k)}},
$$

where each $R_{i}^{(k)}$ is a polynomial which depends on the variables $x_{1}^{(l)}, x_{2}^{(l)}$ with $1 \leq l \leq k-1$. Also, matrix \mathcal{K} is

$$
\mathcal{K}=\left(\begin{array}{ll}
\frac{\partial f_{1}}{\partial q} & \frac{\partial f_{1}}{\partial p} \\
\frac{\partial f_{2}}{\partial q} & \frac{\partial f_{2}}{\partial p}
\end{array}\right)+\left(\begin{array}{ll}
v_{1} & \\
& v_{2}
\end{array}\right)=\left(\begin{array}{cc}
0 & 2 \\
6 q & 0
\end{array}\right)+\left(\begin{array}{ll}
2 & \\
& 3
\end{array}\right) .
$$

$$
\left(k I_{2}-\mathcal{K}\left(x^{(0)}\right)\right)\binom{x_{1}^{(k)}}{x_{2}^{(k)}}=\binom{R_{1}^{(k)}}{R_{2}^{(k)}}
$$

When the matrix $k \mathrm{Id}_{n}-\mathcal{K}\left(x^{(0)}\right)$ is invertible, $x^{(k)}$ is uniquely determined by the preceding terms. If not, the term $x^{(k)}$ has free parameters. Therefore, the eigenvalues of $\mathcal{K}\left(x^{(0)}\right)$ (the Kowalevskaya exponents) are important. Especially, the number of nonnegative integral Kowalevskaya exponents indicate how many parameters the series posses.
The solution starting from the initial term $m_{1}=(0,0)$ is a Taylor series

$$
\begin{aligned}
& q\left(t ; m_{1}\right)=\alpha+\beta t+t^{2}\left(3 \alpha^{2}+s\right)+2 \alpha \beta t^{3}+t^{4}\left(3 \alpha^{3}+\frac{\beta^{2}}{2}+\alpha s\right)+O\left(t^{5}\right) \\
& p\left(t ; m_{1}\right)=\frac{\beta}{2}+t\left(3 \alpha^{2}+s\right)+3 \alpha \beta t^{2}+t^{3}\left(6 \alpha^{3}+\beta^{2}+2 \alpha s\right)+O\left(t^{4}\right)
\end{aligned}
$$

Since the Kowalevski exponents are 2,3, the balance contains two free parameters α and β.

The level set of the momentum map is

$$
H\left(q\left(t ; m_{1}\right), p\left(t ; m_{2}\right)\right)=-s \alpha-\alpha^{3}+\frac{\beta^{2}}{4}=h .
$$

If we write $\alpha=x, \beta=2 y$, the equation is

$$
y^{2}=x^{3}+s x+h
$$

This is an elliptic curve in the Weierstrass form.

The spectral curve and the Hamiltonian for P_{I}

- The autonomous first Painlevé equation has the following Lax pair.

$$
A(x)=\left(\begin{array}{cc}
-p & x^{2}+q x+q^{2}+s \\
x-q & p
\end{array}\right)
$$

The spectral curve is defined by $\operatorname{det}\left(y I_{2}-A(x)\right)=0$, which is equivalent to

$$
y^{2}=x^{3}+s x+H_{\mathrm{I}} .
$$

- The level set $H_{\mathrm{I}}(q, p)=h$ of the Hamiltonian function itself is an elliptic curve.

$$
p^{2}-q^{3}-s q=h
$$

or by expressing $p=y, q=x$, we have

$$
y^{2}=x^{3}+s x+h
$$

The degeneration of genus 1 curve

The curve we are considering has the following form.

$$
y^{2}=x^{3}+s x+h
$$

The degeneration of this curve at $h=\infty$ can be studied in the following manner. The affine equation around $h=\infty$ is derived by transforming to $h=1 / \tilde{h}, y=\tilde{y} / \tilde{h}^{3}, x=\tilde{x} / \tilde{h}^{2}$:

$$
\tilde{y}^{2}=\tilde{x}^{3}+s \tilde{h}^{4} \tilde{x}+\tilde{h}^{5} .
$$

The discriminant and the j-invariant of the cubic are

$$
\begin{aligned}
& \Delta=4\left(s \tilde{h}^{4}\right)^{3}+27\left(\tilde{h}^{5}\right)^{2}=\tilde{h}^{10}\left(4 s^{3} \tilde{h}^{2}+27\right) \\
& j=\frac{4\left(s \tilde{h}^{4}\right)^{3}}{\Delta}=\frac{4 s^{4} \tilde{h}^{2}}{4 s^{3} \tilde{h}^{2}+27}
\end{aligned}
$$

$$
\begin{aligned}
\Delta & =4\left(s \tilde{h}^{4}\right)^{3}+27\left(\tilde{h}^{5}\right)^{2}=\tilde{h}^{10}\left(4 s^{3} \tilde{h}^{2}+27\right), \\
j & =\frac{4\left(s \tilde{h}^{4}\right)^{3}}{\Delta}=\frac{4 s^{4} \tilde{h}^{2}}{4 s^{3} \tilde{h}^{2}+27}
\end{aligned}
$$

Kodaira	Dynkin	$\operatorname{ord}(\Delta)$	$\operatorname{ord}(j)$	Kodaira	Dynkin	$\operatorname{ord}(\Delta)$	$\operatorname{ord}(j)$
I_{0}	-	0	≥ 0	I_{0}^{*}	$D_{4}^{(1)}$	6	≥ 0
I_{m}	$A_{m-1}^{(1)}$	m	$-m$	I_{m}^{*}	$D_{4+m}^{(1)}$	$6+m$	$-m$
II	-	2	≥ 0	IV^{*}	$E_{6}^{(1)}$	8	≥ 0
III	$A_{1}^{(1)}$	3	≥ 0	III^{*}	$E_{7}^{(1)}$	9	≥ 0
IV	$A_{2}^{(1)}$	4	≥ 0	II^{*}	$E_{8}^{(1)}$	10	≥ 0

Table: Tate's algorithm and Kodaira types

At $\tilde{h}=0$, using Tate's algorithm, we can see that the elliptic curve has the degeneration of Kodaira-type II* or E_{8} in Dynkin's notation.

Degeneration scheme of the 2-dimensional Painlevé-type equations

There are 8 types of 2-dimensional Painlevé-type equations, and all the equations can be obtained from H_{VI} by degeneration.

Degeneartion scheme of the 4-dimensional Painlevé-type

 equations $[10,9,15,8,5,7,6]$

Example: The autonomous Garnier system of type 9/2 [12]

The autonomous Garnier system of type $9 / 2$ is a Hamiltonian system with the Hamiltonians

$$
\begin{aligned}
& H_{1}= H_{\mathrm{Gar}, s_{1}}^{\frac{9}{2}}= \\
& H_{1} q_{2}^{2}-p_{1} s_{1}+p_{2} s_{2}+p_{1}^{4}+3 p_{2} p_{1}^{2}+p_{2}^{2}-2 q_{1} q_{2}, \\
& \frac{\mathrm{Gar}, s_{2}}{2}= p_{1}^{2} q_{2}^{2}-2 p_{1} q_{1} q_{2}+p_{2} q_{2}^{2}+p_{1}^{3} s_{2}+p_{1} s_{2}^{2}+p_{2} p_{1} s_{2}+p_{2} s_{1}-p_{2} p_{1}^{3}-2 \\
&-q_{2}^{2} s_{2}+q_{1}^{2},
\end{aligned}
$$

where s_{1}, s_{2} are constants. The Hamiltonian system for $H_{\mathrm{Gar}, s_{1}}^{\frac{9}{2}}$ is

$$
\begin{array}{ll}
\frac{d q_{1}}{d t}=4 p_{1}^{3}+6 p_{2} p_{1}+q_{2}^{2}-s_{1}=: f_{1}, & \frac{d q_{2}}{d t}=3 p_{1}^{2}+2 p_{2}+s_{2}=: f_{3}, \\
\frac{d p_{1}}{d t}=2 q_{2}=: f_{2}, & \frac{d p_{2}}{d t}=2\left(q_{1}-p_{1} q_{2}\right)=: f_{4} .
\end{array}
$$

This is a weight-homogeneous Hamiltonian system with the following weights.

$\operatorname{deg}\left(q_{1}, p_{1}, q_{2}, p_{2}\right)$	$\operatorname{deg}\left(H_{1}, H_{2}, s_{1}, s_{2}\right)$
$(5,2,3,4)$	$(8,10,6,4)$

There are three types of family of Laurent series, with the initial terms $m_{1}=(0,0,0,0), m_{2}=(-1,1,-1,0)$ and $m_{3}=(9,3,-3,-9)$, respectively. The Kowalevski exponents (eigenvalues of $\mathcal{K}\left(x^{(0)}\right)$, "K-exponents" for short) for each indicial locus is as follows.

indicial locus	K-exponents	\# free para's	fiber (Liouville torus)
$m_{1}=(0,0,0,0)$	$(2,3,4,5)$	4	affine abelian surface
$m_{2}=(-1,1,-1,0)$	$(-1,2,5,8)$	3	genus two curve
$m_{3}=(9,3,-3,-9)$	$(-1,-3,8,10)$	2	point

The following families of Laurent series starting from $m_{2}=(-1,1,-1,0)$ contains three free parameters, α, β, and γ.

$$
\begin{aligned}
x_{1}\left(t ; m_{2}\right)= & -\frac{1}{t^{5}}+\frac{\alpha}{t^{3}}+\beta+t\left(-\frac{\alpha^{3}}{2}-\frac{9 \alpha s_{2}}{35}+\frac{s_{1}}{7}\right)-\frac{15}{2} t^{2}(\alpha \beta)+\gamma t^{3} \\
& +t^{4}\left(\frac{18 \beta s_{2}}{7}-\frac{15 \alpha^{2} \beta}{2}\right)+O\left(t^{5}\right), \\
x_{2}\left(t ; m_{2}\right)= & \frac{1}{t^{2}}+\frac{\alpha}{2}+t^{2}\left(-\frac{3 \alpha^{2}}{4}-\frac{3 s_{2}}{5}\right)-4 \beta t^{3}+\frac{1}{28} t^{4}\left(-35 \alpha^{3}-24 \alpha s_{2}+4 s_{1}\right)+(\\
x_{3}\left(t ; m_{2}\right)= & -\frac{1}{t^{3}}+t\left(-\frac{3 \alpha^{2}}{4}-\frac{3 s_{2}}{5}\right)-6 \beta t^{2}+\frac{1}{14} t^{3}\left(-35 \alpha^{3}-24 \alpha s_{2}+4 s_{1}\right)-\frac{15}{2} t \\
& +O\left(t^{5}\right), \\
x_{4}\left(t ; m_{2}\right)= & -\frac{3 \alpha}{2 t^{2}}+\left(\frac{3 \alpha^{2}}{2}+s_{2}\right)+6 \beta t+t^{2}\left(\frac{9 \alpha^{3}}{8}+\frac{9 \alpha s_{2}}{10}\right) \\
& +\frac{3 t^{4}\left(1925 \alpha^{4}+1680 \gamma-120 \alpha^{2} s_{2}-400 \alpha s_{1}-1008 s_{2}^{2}\right)}{12320}+O\left(t^{5}\right) .
\end{aligned}
$$

The level set of the moment map is

$$
\begin{aligned}
& H_{s_{1}}\left(x_{1}\left(t ; m_{2}\right), x_{2}\left(t ; m_{2}\right), x_{3}\left(t ; m_{2}\right), x_{4}\left(t ; m_{2}\right)\right)=h_{1}, \\
& H_{s_{2}}\left(x_{1}\left(t ; m_{2}\right), x_{2}\left(t ; m_{2}\right), x_{3}\left(t ; m_{2}\right), x_{4}\left(t ; m_{2}\right)\right)=h_{2} .
\end{aligned}
$$

These are equivalent to the followings

$$
\begin{gathered}
\frac{405 \alpha^{4}}{32}+\frac{81 \gamma}{22}+\frac{648 \alpha^{2} s_{2}}{77}-\frac{150 \alpha s_{1}}{77}-\frac{23 s_{2}^{2}}{110}=h_{1} \\
s_{1}\left(s_{2}-\frac{207 \alpha^{2}}{308}\right)+\frac{81\left(35\left(99 \alpha^{5}+48 \alpha \gamma+704 \beta^{2}\right)+760 \alpha^{3} s_{2}-1008 \alpha s_{2}^{2}\right)}{24640}=h_{2} . \\
\quad-\frac{243 \alpha^{5}}{32}+81 \beta^{2}+\frac{3 \alpha h_{1}}{2}-\frac{81 \alpha^{3} s_{2}}{8}+s_{1}\left(\frac{9 \alpha^{2}}{4}+s_{2}\right)-3 \alpha s_{2}^{2}=h_{2} .
\end{gathered}
$$

By replacing $\alpha=\frac{2}{3} x, \beta=\frac{1}{9} y$, the equation reads

$$
y^{2}=x^{5}+3 s_{2} x^{3}-s_{1} x^{2}+\left(2 s_{2}^{2}-h_{1}\right) x+h_{2}-s_{1} s_{2} .
$$

These three parameter family of the Laurent series corresponds to a genus two curve on a fiber of the momentum map. This curve (the boundary divisor of the Liouville torus) is called the Painlevé divisor.

Three types of families of Laurent solutions and restriction to a fiber

indicial locus	K-exponents	\# para's	fiber (Liouville torus)	dim
$m_{1}=(0,0,0,0)$	$(2,3,4,5)$	4	affine abelian surface	$4-2=2$
$m_{2}=(-1,1,-1,0)$	$(-1,2,5,8)$	3	genus two curve	$3-2=1$
$m_{3}=(9,3,-3,-9)$	$(-1,-3,8,10)$	2	point	$2-2=0$

$$
y^{2}=x^{5}+3 s_{2} x^{3}-s_{1} x^{2}+\left(2 s_{2}^{2}-h_{1}\right) x+h_{2}-s_{1} s_{2} .
$$

The three parameter Laurent solution (principal balance) corresponds to a genus two curve (Painlevé divisor) on a fiber of the momentum map.

This equation is exactly same as the spectral curve of Garnier 9/2.

$$
A(x)=A_{0} x^{3}+A_{1} x^{2}+A_{2} x+A_{3},
$$

where

$$
\begin{aligned}
& A_{0}=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right), A_{1}=\left(\begin{array}{cc}
0 & p_{1} \\
1 & 0
\end{array}\right), A_{2}=\left(\begin{array}{cc}
q_{2} & p_{1}^{2}+p_{2}+2 s_{1} \\
-p_{1} & -q_{2}
\end{array}\right), \\
& A_{3}=\left(\begin{array}{cc}
q_{1}-p_{1} q_{2} & p_{1}^{3}+2 p_{1} p_{2}-q_{2}^{2}+s_{1} p_{1}-s_{2} \\
-p_{2}+s_{1} & -q_{1}+p_{1} q_{2}
\end{array}\right) .
\end{aligned}
$$

The spectral curve

$$
\operatorname{det}\left(y I_{2}-A(x)\right)=0 .
$$

of the Garnier system of type $\frac{9}{2}$ is expressed as

$$
y^{2}=x^{5}+3 s_{2} x^{3}-s_{1} x^{2}+\left(2 s_{2}^{2}-h_{1}\right) x+h_{2}-s_{1} s_{2} .
$$

The spectral curve has the exactly the same equation as the Painlevé divisor.

We consider the degeneration along a line $h_{2}=a h_{1}+b$, where a and b are generic constants.

$$
y^{2}=x^{5}+3 s_{2} x^{3}-s_{1} x^{2}+\left(2 s_{2}^{2}-h_{1}\right) x+a h_{1}+b-s_{1} s_{2} .
$$

In order to see the degeneration at $h_{1}=\infty$, we introduce $\tilde{x}=x / h_{1}, \tilde{y}=y / h_{1}^{3}, \tilde{h}=1 / h_{1}$.

$$
\tilde{y}^{2}=\tilde{h}\left(\tilde{x}^{5}+3 s_{2} \tilde{h}^{3} \tilde{x}^{3}-s_{1} \tilde{h}^{4} \tilde{x} x^{2}+\left(2 s_{2}^{2} \tilde{h}-1\right) \tilde{h}^{4} \tilde{x}+\tilde{h}^{4}\left(a+\left(b-s_{1} s_{2}\right) \tilde{h}\right)\right) .
$$

The degenerations of genus two curves can be studied using Liu's algorighm [11], which is a genus two counterpart of Tate's algorithm. VII* $: H_{G a r, s_{1}}^{\frac{9}{2}}$

Does it always work?

In the examples we have seen, the Painlevé divisor (boundary divisor in the compactification of the Liouville torus) and the spectral curve are isomorphic. Therefore, they had the same generic degeneration.

Painlevé divisor	spectral curve
traceable from nonlinear system	needs an actual linear problem (Lax)

Can we recover the family of spectral curves from the family of the Painlevé divisors? If so, we are able to recover the singularity data of linear problem (Lax) just be looking at the nonlinear integrable system.

Nonlinear (Painlevé divisor) $\stackrel{?}{\rightleftharpoons}$ Linear (spectral curve)

Preliminaries: Uniqueness of the polarization

The Jacobian of a smooth projective curve of genus g

$$
J(C):=H^{0}\left(\omega_{C}\right)^{*} / H_{1}(C, \mathbb{Z})
$$

comes with the canonical principal polarization Θ induced by the symplectic basis for C.
The classical Torelli's therem startes:
Theorem 1 (The classical Torelli theorem for curves)
Two Jacobians $(J(C), \Theta)$ and $\left(J\left(C^{\prime}\right), \Theta^{\prime}\right)$ of smooth curves C and C^{\prime} are isomorphic as polarized abelian varieties if and only if C and C^{\prime} are isomorphic.

Therefore, it is enough to show that the typical element of our family has unique principal polarization. This in tern, is equivalent to saying that the Jacobian of the typical element of our family has no nontrivial endomorphism.

Theorem 2

For the 4-dimesional autonomous Painlevé-type equations, the Jacobian of generic spectral curve has no nontrivial endomorphism.

Using the correspondence of the $\mathrm{NS}(X)$ and the endomorphism ring, we have

Corolally 1

For the 4-dimesional autonomous Painlevé-type equations, the Jacobian of generic spectral curve has unique principal polarization.

Theorem 3

For the 4-dimesional autonomous Painlevé-type equations, the generic spectral curve is isomorphic to the corresponding Painlevé divisor. In particular, generic degeneration of the spectral curve and generic degeneration of the Painlevé divisors are the same.

Remark 1

For the all 40 types of autonomous 4-dimensional Painlevé-type equqtions, the generic degeneration of the spectral curves are known [1]. Therefore, if we compute the generic degeneration of the Painlevé divisors for one of these equations, we can tell the corresponding linear equation.

Examples: $\mathrm{I}_{0-0-0}^{*}: H_{\text {Gar }}^{1+1+1+1+1}$

$\mathrm{I}_{0}-\mathrm{II}^{*}-1: H_{\mathrm{I}}^{\mathrm{Mat}}$

Sketch of a proof for Theorem 2

- We first prove the triviality of the endomorphism rings for the most degenerated cases $\left(H_{\mathrm{Gar}}^{9 / 2}, H_{\mathrm{Gar}}^{\frac{5}{2}+\frac{3}{2}}, H_{\mathrm{KFS}}^{\frac{4}{3}+\frac{4}{3}}, H_{\mathrm{KSs}}^{\frac{3}{2}+\frac{5}{4}}, H_{\mathrm{Mat}}^{\mathrm{III}\left(\mathrm{D}_{8}\right)}, H_{\mathrm{Mat}}^{\mathrm{I}}\right)$.

- Note that Jacobian of generic hyperelliptic curve has only trivial endomorphism.
- We will show that the space of the spectral curves of our specific system dominate the moduli space of genus two curve so that a typical curve in our family has no non-trivial endomorphisms.
- The moduli scheme of genus two curves M_{2} can be identified with $\operatorname{Proj} k\left[J_{2}, J_{4}, J_{6}, J_{10}\right]-\left\{J_{10}=0\right\}$, where $J_{2 i}$'s are the Igusa invariants and J_{10} is the discriminant.
- For the 4 cases $\left(H_{\mathrm{Gar}}^{9 / 2}, H_{\mathrm{Gar}}^{\frac{5}{2}+\frac{3}{2}}, H_{\mathrm{Mat}}^{\mathrm{III}\left(\mathrm{D}_{8}\right)}, H_{\mathrm{Mat}}^{\mathrm{I}}\right.$), we have checked (using Jacobian criterion) that the Igusa invariants of their spectral curves are algebraically independent, so that the each space of spectral curves dominates M_{2}.
- Therefore, generic member of the spectral curves of these 4 cases has only trivial endomorphism ring for the Jacobian.
- For the rest 2 cases $\left(H_{\mathrm{KFS}}^{\frac{4}{3}+\frac{4}{3}}, H_{\mathrm{KSs}}^{\frac{3}{2}+\frac{5}{4}}\right)$, the above approach does not work and our current proof is a bit more subtle (use $\bmod p$ reduction..., we skip).
- Since we know that all the other cases degenerate to one of these 6 cases, all the cases have generically trivial endomorphism rings.

Summary

For the autonomous 4-dimensional Painlevé-type equations, we can recover a linear problem from a nonlinear problem (in principle).

Thank you for your attention!
（ M．Adler，P．van Moerbeke，and P．Vanhaecke．
Algebraic integrability，Painlevé geometry and Lie algebras，volume 47
of Series of Modern Surveys in Mathematics．
Springer－Verlag，Berlin， 2004.
雷 M．－a．Inaba，K．Iwasaki，and M．－H．Saito．
Moduli of stable parabolic connections，Riemann－Hilbert correspondence and geometry of Painlevé equation of type VI．I．
Publ．Res．Inst．Math．Sci．，42（4）：987－1089， 2006.
䡒
M．Jimbo，T．Miwa，and K．Ueno．
Monodromy preserving deformation of linear ordinary differential equations with rational coefficients．I．General theory and τ－function． Phys．D，2（2）：306－352， 1981.
H. Kawakami.

Four-dimensional Painlevé-type equations associated with ramified linear equations I: Matrix Painlevé systems.
Funkcial. Ekvac.

H. Kawakami.

Four-dimensional Painlevé-type equations associated with ramified linear equations III: Garnier systems and Fuji-Suzuki systems.
SIGMA Symmetry Integrability Geom. Methods Appl., 13:Paper No. 096, 50, 2017.

家
H. Kawakami.

Four-dimensional Painlevé-type equations associated with ramified linear equations II: Sasano systems.
J. Integrable Syst., 3(1):xyy013, 36, 2018.
H. Kawakami, A. Nakamura, and H. Sakai.

Degeneration scheme of 4-dimensional Painlevé-type equations.
volume 37 of MSJ Memoirs. Mathematical Society of Japan, Tokyo, 2018.

图 H．Kawamuko．
On the Garnier system of half－integer type in two variables．
Funkcial．Ekvac．，52（2）：181－201， 2009.
國
H．Kimura．
The degeneration of the two－dimensional Garnier system and the polynomial Hamiltonian structure．
Ann．Mat．Pura Appl．（4），155：25－74， 1989.
固 Q．Liu．
Modèles minimaux des courbes de genre deux．
J．Reine Angew．Math．，453：137－164， 1994.
A．Nakamura．
The degeneration of the Painlevé divisors associated with the autonomous garnier system of type 9／2．
Josai Math．Mono．， 2017.

E. Rains.

Generalized Hitchin systems on rational surfaces.
ArXiv e-prints, July 2013.
E. M. Rains.

The birational geometry of noncommutative surfaces.
arXiv preprint arXiv:1907.11301, 2019.
國 H. Sakai.
Isomonodromic deformation and 4-dimensional Painlevé type equations. volume 37 of MSJ Memoirs. Mathematical Society of Japan, Tokyo, 2018.

圂
H. Yoshida.

Necessary condition for the existence of algebraic first integrals. I.
Kowalevski's exponents.
Celestial Mech., 31(4):363-379, 1983.

