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Linear to nonlinear

We consider the Painlevé-type equations or their autonomous (=isospectral)
version, the Hitchin systems.
The direction “linear to nonlinear" is well-studied.

Linear (commutative, Higgs)
isospectral deformation // Nonlinear (noncommutative systems)

Linear (noncommutative, connection) isomonodromic deformation//

λ → 0 for λ-connection

OO

Nonlinear (Painlevé-type systems)

autonomous limit

OO

Jimbo-Miwa-Ueno [4], Inaba-Iwasaki-Saito [3], Rains, “Generalized Hitchin
systems on rational surfaces"[13], “The birational geometry of
noncommutative surfaces", [14], and more...

Nakamura, Rains Nonlinear to linear 12/08/2019 2 / 36



Nonlinear to linear?

What if we do not know linear problem in advance, and only have nonlinear
integrable systems? Can we recover a linear problem?

Linear (Lax)
Isospectral,Isomonodromic
−−−−−−−−−−−−−−−−−−−⇀↽−−−−−−−−−−−−−−−−−−−

?
Nonlinear (Hitchin, Painlevé)

Goal
We will suggest a way to recover a linear problem from a nonlinear
problem for the 4-dimensional autonomous Painlevé-type systems.
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Summary
For the autonomous 4-dimensional Painlevé-type equations, we can
recover a linear problem from a nonlinear problem (in
principle).

Nonlinear //

��

Linear (Lax)

��

Painlevé divisor = //

��

spectral curve

��

generic degeneration
of the Painlevé divisors

= // generic degeneration
of the spectral curves
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Extracting geometrical data from nonlinear systems

Adler, Van Moerbeke, Vanhaecke,
“Algebraic Integrablility, Painlevé
Geometry, and Lie Algebras"[2]

Kowalewski-Painlevé analysis
compactification of the Liouville
tori
proving algebraic complete
integrability
etc.
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Proposition 1 (Yoshida [16], Adler-van Moerbeke-Vanhake [2])
Suppose that V is a weight homogeneous vector field on Cn, given by

Ûxi = fi(x1, . . . , xn), (i = 1, . . . ,n)

and suppose that

xi(t) =
∞∑
k=0

x(k)i t−νi+k, (i = 1, . . . ,n)

is a weight homogeneous Laurent solution for this vector field. Then the
leading coefficients x(0)i satisfy the non-linear algebraic equations

ν1x(0)1 + f1(x(0)1 , . . . , x
(0)
n ) = 0,

...

νnx(0)n + fn(x(0)1 , . . . , x
(0)
n ) = 0.
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Proposition 2 (continued)

On the other hand, the subsequent terms x(k)i satisfy

(kIn − K(x(0)))x(k) = R(k),

where

x(k) =
©­­«

x(k)1
...

x(k)n

ª®®¬ , R(k) =
©­­«
R(k)

1
...

R(k)
n

ª®®¬ ,
where each R(k)

i is a polynomial which depends on the variables x(l)1 , . . . , x
(l)
n

with 1 ≤ l ≤ k − 1 only. Also, the (i, j)-th entry of the (n × n)-matrix K is the
regular function on Cn defined by

Ki, j =
∂ fi
∂xj
+ νiδi, j .

The eigenvalues of K are called the Kowalevski exponents.
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Example: The 2-dimensional first Painlevé equation

Let us consider the autonomous HI given by the Hamiltonian

HI(q, p) = p2 − q3 − sq.

The Hamiltonian system is thus

Ûq = 2p C f1, Ûp = 3q2 + s C f2.

This is a weight-homogeneous system with the weights

deg(q, p) deg(H1, s)
(2,3) (6,4)

We assume the following form of formal solutions

q(t) =
∞∑
k=0

x(k)1 t−2+k, p(t) =
∞∑
k=0

x(k)2 t−3+k .
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The initial terms have to satisfy the following nonlinear equations

2x(0)1 + 2x(0)2 = 0, 3x(0)2 + 3
(
x(0)1

)2
= 0.

These indicial equations have two solutions(
x(0)1 , x

(0)
2

)
= (0,0) C m1, (1,−1) C m2.

The subsequent terms can be computed by solving linear equations(
kI2 − K(x(0))

) (
x(k)1
x(k)2

)
=

(
R(k)

1
R(k)

2

)
,

where each R(k)
i is a polynomial which depends on the variables x(l)1 , x

(l)
2 with

1 ≤ l ≤ k − 1. Also, matrix K is

K =
©­­«
∂ f1
∂q

∂ f1
∂p

∂ f2
∂q

∂ f2
∂p

ª®®¬ +
(
ν1
ν2

)
=

(
0 2
6q 0

)
+

(
2

3

)
.
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(
kI2 − K(x(0))

) (
x(k)1
x(k)2

)
=

(
R(k)

1
R(k)

2

)
When the matrix k Idn −K(x(0)) is invertible, x(k) is uniquely determined by
the preceding terms. If not, the term x(k) has free parameters. Therefore, the
eigenvalues of K(x(0)) (the Kowalevskaya exponents) are important.
Especially, the number of nonnegative integral Kowalevskaya exponents
indicate how many parameters the series posses.
The solution starting from the initial term m1 = (0,0) is a Taylor series

q(t; m1) =α + βt + t2
(
3α2 + s

)
+ 2αβt3 + t4

(
3α3 +

β2

2
+ αs

)
+O

(
t5

)
,

p(t; m1) =
β

2
+ t

(
3α2 + s

)
+ 3αβt2 + t3

(
6α3 + β2 + 2αs

)
+O

(
t4

)
.

Since the Kowalevski exponents are 2,3, the balance contains two free
parameters α and β.
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The level set of the momentum map is

H(q(t; m1), p(t; m2)) = −sα − α3 +
β2

4
= h.

If we write α = x, β = 2y, the equation is

y2 = x3 + sx + h.

This is an elliptic curve in the Weierstrass form.
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The spectral curve and the Hamiltonian for PI

The autonomous first Painlevé equation has the following Lax pair.

A(x) =
(
−p x2 + qx + q2 + s

x − q p

)
.

The spectral curve is defined by det(yI2 − A(x)) = 0, which is equivalent
to

y2 = x3 + sx + HI.

The level set HI(q, p) = h of the Hamiltonian function itself is an elliptic
curve.

p2 − q3 − sq = h,

or by expressing p = y,q = x, we have

y2 = x3 + sx + h.
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The degeneration of genus 1 curve

The curve we are considering has the following form.

y2 = x3 + sx + h.

The degeneration of this curve at h = ∞ can be studied in the following
manner. The affine equation around h = ∞ is derived by transforming to
h = 1/h̃, y = ỹ/h̃3, x = x̃/h̃2:

ỹ2 = x̃3 + sh̃4 x̃ + h̃5.

The discriminant and the j-invariant of the cubic are

∆ =4(sh̃4)3 + 27(h̃5)2 = h̃10(4s3 h̃2 + 27),

j =
4(sh̃4)3
∆

=
4s4 h̃2

4s3 h̃2 + 27
.
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∆ =4(sh̃4)3 + 27(h̃5)2 = h̃10(4s3 h̃2 + 27),

j =
4(sh̃4)3
∆

=
4s4 h̃2

4s3 h̃2 + 27
.

Kodaira Dynkin ord(∆) ord( j) Kodaira Dynkin ord(∆) ord( j)
I0 - 0 ≥0 I∗0 D(1)

4 6 ≥0
Im A(1)

m−1 m −m I∗m D(1)
4+m 6 + m −m

II - 2 ≥0 IV∗ E (1)
6 8 ≥0

III A(1)
1 3 ≥0 III∗ E (1)

7 9 ≥0
IV A(1)

2 4 ≥0 II∗ E (1)
8 10 ≥0

Table: Tate’s algorithm and Kodaira types
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At h̃ = 0, using Tate’s algorithm, we can see that the elliptic curve has the
degeneration of Kodaira-type II∗ or E8 in Dynkin’s notation.

2 4 6

3

5 4 3 2 1

Nakamura, Rains Nonlinear to linear 12/08/2019 15 / 36



Degeneration scheme of the 2-dimensional Painlevé-type equations

There are 8 types of 2-dimensional Painlevé-type equations, and all the
equations can be obtained from HVI by degeneration.

1 + 1 + 1 + 1
11, 11, 11, 11
HVI

(
D

(1)
4

) //
2 + 1 + 1

(1)(1), 11, 11
HV

(
D

(1)
5

)

KK

//

��

3 + 1
((1))((1)), 11
HIV

(
E

(1)
6

)

3
2 + 1 + 1

(1)2, 11, 11
HIII

(
D

(1)
6

)

2 + 2
(1)(1), (1)(1)
HIII

(
D

(1)
6

) //

��

KK

��

KK

//

4
(((1)))(((1)))
HII

(
E

(1)
7

)

3
2 + 2

(((1)))2, (1)(1)
HIII

(
D

(1)
7

)

5
2

(((1)))2, 11
HII

(
E

(1)
7

)

//

//

��KK

7
2

(((((1)))))2
HI

(
E

(1)
8

)

3
2 +

3
2

(1)2, (1)2
HIII

(
D

(1)
8

)
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Degeneartion scheme of the 4-dimensional Painlevé-type
equations [10, 9, 15, 8, 5, 7, 6]

H1+1+1+1+1
Gar

HA5
FS

HD6
Ss

//

//

JJ

��

//

AA

H2+1+1+1
Gar

HA4
FS

HA5
NY

HD5
Ss

AA

//

��

LL

��

//

//

KK

//

CC

H3+1+1
Gar

H2+2+1
Gar

H
3
2+1+1+1
Gar

HA3
FS

HA4
NY

HD4
Ss

77

))

��

CC

77

��

55

''

JJ

II

//

JJ

//

KK

H4+1
Gar

H3+2
Gar

H
5
2+1+1
Gar

H
2+ 3

2+1
Gar

H
2+ 3

2
Suz

H
2+ 3

2
KSs

66

((

CC

((

��

CC

((

CC

66

((

//

KK

//

H5
Gar

H
7
2+1
Gar

H
3+ 3

2
Gar

H
5
2+2
Gar

H
3
2+

3
2+1

Gar

H
2+ 4

3
KFS

H
3
2+

3
2

KSs

��//??

��

GG

//??

//

//

H
9
2
Gar

H
5
2+

3
2

Gar

H
3
2+

4
3

KFS

H
2+ 5

4
KSs

//

//

H
4
3+

4
3

KFS

H
3
2+

5
4

KSs

HVI
Mat

// HV
Mat

77

''

HIII(D6)
Mat

HIV
Mat

//

��//

HIII(D7)
Mat

HII
Mat

//

��//

HIII(D8)
Mat

HI
Mat
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Example: The autonomous Garnier system of type 9/2 [12]
The autonomous Garnier system of type 9/2 is a Hamiltonian system with the
Hamiltonians

H1 = H
9
2
Gar,s1

=p1q2
2 − p1s1 + p2s2 + p4

1 + 3p2p2
1 + p2

2 − 2q1q2,

H2 = H
9
2
Gar,s2

=p2
1q2

2 − 2p1q1q2 + p2q2
2 + p3

1s2 + p1s2
2 + p2p1s2 + p2s1 − p2p3

1 − 2p2
2p1

− q2
2s2 + q2

1,

where s1, s2 are constants. The Hamiltonian system for H
9
2
Gar,s1

is

dq1

dt
= 4p3

1 + 6p2p1 + q2
2 − s1 C f1,

dq2

dt
=3p2

1 + 2p2 + s2 C f3,

dp1

dt
= 2q2 C f2,

dp2

dt
=2 (q1 − p1q2) C f4.

This is a weight-homogeneous Hamiltonian system with the following weights.
deg(q1, p1,q2, p2) deg(H1,H2, s1, s2)

(5,2,3,4) (8,10,6,4)

Table: The weights of H
9
2
Gar
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There are three types of family of Laurent series, with the initial terms
m1 = (0,0,0,0), m2 = (−1,1,−1,0) and m3 = (9,3,−3,−9), respectively. The
Kowalevski exponents (eigenvalues of K(x(0)), “K-exponents" for short) for
each indicial locus is as follows.

indicial locus K-exponents # free para’s fiber (Liouville torus)
m1 = (0,0,0,0) (2,3,4,5) 4 affine abelian surface
m2 = (−1,1,−1,0) (−1,2,5,8) 3 genus two curve
m3 = (9,3,−3,−9) (−1,−3,8,10) 2 point
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The following families of Laurent series starting from m2 = (−1,1,−1,0)
contains three free parameters, α, β, and γ.

x1(t; m2) = −
1
t5 +

α

t3 + β + t
(
−α

3

2
− 9αs2

35
+

s1

7

)
− 15

2
t2(αβ) + γt3

+ t4
(
18βs2

7
− 15α2β

2

)
+O

(
t5

)
,

x2(t; m2) =
1
t2 +

α

2
+ t2

(
−3α2

4
− 3s2

5

)
− 4βt3 +

1
28

t4
(
−35α3 − 24αs2 + 4s1

)
+O

(
t5

)
,

x3(t; m2) = −
1
t3 + t

(
−3α2

4
− 3s2

5

)
− 6βt2 +

1
14

t3
(
−35α3 − 24αs2 + 4s1

)
− 15

2
t4(αβ)

+O
(
t5

)
,

x4(t; m2) = −
3α
2t2 +

(
3α2

2
+ s2

)
+ 6βt + t2

(
9α3

8
+

9αs2

10

)
+

3t4 (
1925α4 + 1680γ − 120α2s2 − 400αs1 − 1008s2

2
)

12320
+O

(
t5

)
.
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The level set of the moment map is

Hs1(x1(t; m2), x2(t; m2), x3(t; m2), x4(t; m2)) =h1,

Hs2(x1(t; m2), x2(t; m2), x3(t; m2), x4(t; m2)) =h2.

These are equivalent to the followings

405α4

32
+

81γ
22
+

648α2s2

77
− 150αs1

77
−

23s2
2

110
= h1,

s1

(
s2 −

207α2

308

)
+

81
(
35

(
99α5 + 48αγ + 704β2) + 760α3s2 − 1008αs2

2
)

24640
= h2.

−243α5

32
+ 81β2 +

3αh1

2
− 81α3s2

8
+ s1

(
9α2

4
+ s2

)
− 3αs2

2 = h2.

By replacing α = 2
3 x, β = 1

9 y, the equation reads

y2 = x5 + 3s2x3 − s1x2 + (2s2
2 − h1)x + h2 − s1s2.

These three parameter family of the Laurent series corresponds to a genus two
curve on a fiber of the momentum map. This curve (the boundary divisor of
the Liouville torus) is called the Painlevé divisor.
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Three types of families of Laurent solutions and restriction
to a fiber

indicial locus K-exponents # para’s fiber (Liouville torus) dim
m1 = (0,0,0,0) (2,3,4,5) 4 affine abelian surface 4-2=2
m2 = (-1,1,-1,0) (−1,2,5,8) 3 genus two curve 3-2=1
m3 = (9,3,-3,-9) (−1,−3,8,10) 2 point 2-2=0

y2 = x5 + 3s2x3 − s1x2 + (2s2
2 − h1)x + h2 − s1s2.

The three parameter Laurent solution (principal balance) corresponds to a
genus two curve (Painlevé divisor) on a fiber of the momentum map.
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This equation is exactly same as the spectral curve of Garnier 9/2.

A(x) =A0x3 + A1x2 + A2x + A3,

where

A0 =

(
0 1
0 0

)
, A1 =

(
0 p1
1 0

)
, A2 =

(
q2 p2

1 + p2 + 2s1
−p1 −q2

)
,

A3 =

(
q1 − p1q2 p3

1 + 2p1p2 − q2
2 + s1p1 − s2

−p2 + s1 −q1 + p1q2

)
.

The spectral curve

det (yI2 − A(x)) = 0.

of the Garnier system of type 9
2 is expressed as

y2 = x5 + 3s2x3 − s1x2 + (2s2
2 − h1)x + h2 − s1s2.

The spectral curve has the exactly the same equation as the Painlevé divisor.
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We consider the degeneration along a line h2 = ah1 + b, where a and b are
generic constants.

y2 = x5 + 3s2x3 − s1x2 + (2s2
2 − h1)x + ah1 + b − s1s2.

In order to see the degeneration at h1 = ∞, we introduce
x̃ = x/h1, ỹ = y/h3

1, h̃ = 1/h1.

ỹ2 = h̃
(
x̃5 + 3s2 h̃3 x̃3 − s1 h̃4 x̃ x2 + (2s2

2 h̃ − 1)h̃4 x̃ + h̃4(a + (b − s1s2)h̃)
)
.

The degenerations of genus two curves can be studied using Liu’s
algorighm [11], which is a genus two counterpart of Tate’s algorithm.
VII∗ : H

9
2
Gar,s1

1 2B 5 8

4

7 6 5 4 3 2 1
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Does it always work?

In the examples we have seen , the Painlevé divisor (boundary divisor in the
compactification of the Liouville torus) and the spectral curve are
isomorphic. Therefore, they had the same generic degeneration.

Painlevé divisor spectral curve
traceable from nonlinear system needs an actual linear problem (Lax)

Can we recover the family of spectral curves from the family of the
Painlevé divisors? If so, we are able to recover the singularity data of linear
problem (Lax) just be looking at the nonlinear integrable system.

Nonlinear (Painlevé divisor)
?−⇀↽− Linear (spectral curve)
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Preliminaries: Uniqueness of the polarization

The Jacobian of a smooth projective curve of genus g

J(C) B H0(ωC)∗/H1(C,Z)

comes with the canonical principal polarization Θ induced by the symplectic
basis for C.
The classical Torelli’s therem startes:

Theorem 1 (The classical Torelli theorem for curves)
Two Jacobians (J(C),Θ) and (J(C ′),Θ′) of smooth curves C and C ′ are
isomorphic as polarized abelian varieties if and only if C and C ′ are
isomorphic.

Therefore, it is enough to show that the typical element of our family has
unique principal polarization. This in tern, is equivalent to saying that the
Jacobian of the typical element of our family has no nontrivial
endomorphism.
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Theorem 2

For the 4-dimesional autonomous Painlevé-type equations, the Jacobian of
generic spectral curve has no nontrivial endomorphism.

Using the correspondence of the NS(X) and the endomorphism ring, we have

Corolally 1
For the 4-dimesional autonomous Painlevé-type equations, the Jacobian of
generic spectral curve has unique principal polarization.

Theorem 3
For the 4-dimesional autonomous Painlevé-type equations, the generic
spectral curve is isomorphic to the corresponding Painlevé divisor. In
particular, generic degeneration of the spectral curve and generic
degeneration of the Painlevé divisors are the same.
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Remark 1
For the all 40 types of autonomous 4-dimensional Painlevé-type equqtions, the
generic degeneration of the spectral curves are known [1]. Therefore, if we
compute the generic degeneration of the Painlevé divisors for one of these
equations, we can tell the corresponding linear equation.

Examples: I∗0−0−0 : H1+1+1+1+1
Gar

1
1

2B
1

1 1
1

I0 − II∗ − 1: HMat
I

A B 2 3 4 5 6

3

4 2
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Sketch of a proof for Theorem 2

We first prove the triviality of the endomorphism rings for the most
degenerated cases ( H9/2

Gar , H
5
2+

3
2

Gar , H
4
3+

4
3

KFS , H
3
2+

5
4

KSs , HIII(D8)
Mat , HI

Mat).

H1+1+1+1+1
Gar

HA5
FS

HD6
Ss

//

//

JJ

��

//

AA

H2+1+1+1
Gar

HA4
FS

HA5
NY

HD5
Ss

AA

//

��

LL

��

//

//

KK

//

CC

H3+1+1
Gar

H2+2+1
Gar

H
3
2+1+1+1
Gar

HA3
FS

HA4
NY

HD4
Ss

77

))

��

CC

77

��

55

''

JJ

II

//

JJ

//

KK

H4+1
Gar

H3+2
Gar

H
5
2+1+1
Gar

H
2+ 3

2+1
Gar

H
2+ 3

2
Suz

H
2+ 3

2
KSs

66

((

CC

((

��

CC

((

CC

66

((

//

KK

//

H5
Gar

H
7
2+1
Gar

H
3+ 3

2
Gar

H
5
2+2
Gar

H
3
2+

3
2+1

Gar

H
2+ 4

3
KFS

H
3
2+

3
2

KSs

��//??

��

GG

//??

//

//

H
9
2
Gar

H
5
2+

3
2

Gar

H
3
2+

4
3

KFS

H
2+ 5

4
KSs

//

//

H
4
3+

4
3

KFS

H
3
2+

5
4

KSs

HVI
Mat

// HV
Mat

77

''

HIII(D6)
Mat

HIV
Mat

//

��//

HIII(D7)
Mat

HII
Mat

//

��//

HIII(D8)
Mat

HI
Mat
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Note that Jacobian of generic hyperelliptic curve has only trivial
endomorphism.
We will show that the space of the spectral curves of our specific system
dominate the moduli space of genus two curve so that a typical curve in
our family has no non-trivial endomorphisms.
The moduli scheme of genus two curves M2 can be identified with
Proj k[J2, J4, J6, J10] − {J10 = 0}, where J2i’s are the Igusa invariants and
J10 is the discriminant.

For the 4 cases (H9/2
Gar , H

5
2+

3
2

Gar , HIII(D8)
Mat , HI

Mat), we have checked (using
Jacobian criterion) that the Igusa invariants of their spectral curves
are algebraically independent, so that the each space of spectral
curves dominates M2.
Therefore, generic member of the spectral curves of these 4 cases has
only trivial endomorphism ring for the Jacobian.
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For the rest 2 cases (H
4
3+

4
3

KFS , H
3
2+

5
4

KSs ), the above approach does not work and
our current proof is a bit more subtle (use mod p reduction..., we skip).
Since we know that all the other cases degenerate to one of these 6 cases,
all the cases have generically trivial endomorphism rings.
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��

//

AA

H2+1+1+1
Gar

HA4
FS

HA5
NY

HD5
Ss

AA

//

��
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��

//

//
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//
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H
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))

��
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77

��

55

''

JJ
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KK
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H3+2
Gar

H
5
2+1+1
Gar
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2+ 3

2+1
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2
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2+ 3

2
KSs

66

((

CC

((

��

CC

((

CC

66

((

//

KK

//

H5
Gar

H
7
2+1
Gar

H
3+ 3

2
Gar

H
5
2+2
Gar

H
3
2+

3
2+1

Gar

H
2+ 4

3
KFS

H
3
2+

3
2

KSs

��//??

��

GG

//??

//

//

H
9
2
Gar

H
5
2+

3
2

Gar

H
3
2+

4
3

KFS

H
2+ 5

4
KSs

//

//

H
4
3+

4
3

KFS

H
3
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5
4

KSs

HVI
Mat

// HV
Mat

77

''

HIII(D6)
Mat

HIV
Mat

//

��//

HIII(D7)
Mat

HII
Mat

//

��//

HIII(D8)
Mat

HI
Mat
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Summary
For the autonomous 4-dimensional Painlevé-type equations, we can
recover a linear problem from a nonlinear problem (in
principle).

Nonlinear //

��

Linear (Lax)

��

Painlevé divisor = //

��

spectral curve

��

generic degeneration
of the Painlevé divisors

= // generic degeneration
of the spectral curves

Thank you for your attention!
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