Equivariant \mathcal{D}-modules on varieties with finitely many orbits

András Cristian Lőrincz

Max Planck Institute for Mathematics in the Sciences

August 2019, Zürich

Outline

(1) Equivariant \mathcal{D}-modules
(2) Example: the space of $m \times n$ matrices
(3) Spherical varieties

4 Local cohomology

Basic notation

- Let X be complex, irreducible, smooth algebraic variety.

Basic notation

- Let X be complex, irreducible, smooth algebraic variety.
- Let \mathcal{D}_{X} the sheaf of differential operators on X.

Basic notation

- Let X be complex, irreducible, smooth algebraic variety.
- Let \mathcal{D}_{X} the sheaf of differential operators on X.
- When $X=\mathbb{C}^{d}, \mathcal{D}_{X}$ is the Weyl algebra

$$
\mathcal{D}_{X}=\left\langle x_{1}, \ldots, x_{d}, \partial_{1}, \ldots, \partial_{d}\right\rangle
$$

with relations $\left[\partial_{i}, x_{j}\right]=\delta_{i j}$, where $\delta_{i j}$ is the Kronecker delta.

Basic notation

- Let X be complex, irreducible, smooth algebraic variety.
- Let \mathcal{D}_{X} the sheaf of differential operators on X.
- When $X=\mathbb{C}^{d}, \mathcal{D}_{X}$ is the Weyl algebra

$$
\mathcal{D}_{X}=\left\langle x_{1}, \ldots, x_{d}, \partial_{1}, \ldots, \partial_{d}\right\rangle
$$

with relations $\left[\partial_{i}, x_{j}\right]=\delta_{i j}$, where $\delta_{i j}$ is the Kronecker delta.

- A \mathcal{D}-module is throughout a coherent left \mathcal{D}_{X}-module.

Equivariant \mathcal{D}-modules

- Assume G is a connected affine algebraic group acting on X.

$$
m: G \times X \rightarrow X
$$

Equivariant \mathcal{D}-modules

- Assume G is a connected affine algebraic group acting on X.

$$
m: G \times X \rightarrow X
$$

- \mathcal{D}_{X}-module \mathcal{M} is (strongly) equivariant if we have an isomorphism $m^{*}(\mathcal{M}) \cong p_{2}^{*}(\mathcal{M})$ of $\mathcal{D}_{G \times X}$-modules satisfying the usual cocycle condition.

Equivariant \mathcal{D}-modules

- Assume G is a connected affine algebraic group acting on X.

$$
m: G \times X \rightarrow X
$$

- \mathcal{D}_{X}-module \mathcal{M} is (strongly) equivariant if we have an isomorphism $m^{*}(\mathcal{M}) \cong p_{2}^{*}(\mathcal{M})$ of $\mathcal{D}_{G \times X}$-modules satisfying the usual cocycle condition.
- Differentiating the action of G on X gives vector fields on X, so a map $\mathfrak{g} \rightarrow \Gamma\left(X, \mathcal{D}_{X}\right)$. When X is affine, equivariance of a \mathcal{D}_{X}-module means that the action of \mathfrak{g} via $\mathfrak{g} \rightarrow \mathcal{D}_{X}$ can be integrated to an algebraic G-action.

Equivariant \mathcal{D}-modules

- Assume G is a connected affine algebraic group acting on X.

$$
m: G \times X \rightarrow X
$$

- \mathcal{D}_{X}-module \mathcal{M} is (strongly) equivariant if we have an isomorphism $m^{*}(\mathcal{M}) \cong p_{2}^{*}(\mathcal{M})$ of $\mathcal{D}_{G \times X}$-modules satisfying the usual cocycle condition.
- Differentiating the action of G on X gives vector fields on X, so a map $\mathfrak{g} \rightarrow \Gamma\left(X, \mathcal{D}_{X}\right)$. When X is affine, equivariance of a \mathcal{D}_{X}-module means that the action of \mathfrak{g} via $\mathfrak{g} \rightarrow \mathcal{D}_{X}$ can be integrated to an algebraic G-action.
- \mathcal{O}_{X} is equivariant, but \mathcal{D}_{X} is not!

Equivariant \mathcal{D}-modules

- Assume G is a connected affine algebraic group acting on X.

$$
m: G \times X \rightarrow X
$$

- \mathcal{D}_{X}-module \mathcal{M} is (strongly) equivariant if we have an isomorphism $m^{*}(\mathcal{M}) \cong p_{2}^{*}(\mathcal{M})$ of $\mathcal{D}_{G \times X}$-modules satisfying the usual cocycle condition.
- Differentiating the action of G on X gives vector fields on X, so a map $\mathfrak{g} \rightarrow \Gamma\left(X, \mathcal{D}_{X}\right)$. When X is affine, equivariance of a \mathcal{D}_{X}-module means that the action of \mathfrak{g} via $\mathfrak{g} \rightarrow \mathcal{D}_{X}$ can be integrated to an algebraic G-action.
- \mathcal{O}_{X} is equivariant, but \mathcal{D}_{X} is not!
- Let $\bmod _{G}\left(\mathcal{D}_{X}\right)$ denote the full subcategory of equivariant \mathcal{D}-modules. It is closed under subquotients.

The category $\bmod _{G}\left(\mathcal{D}_{X}\right)$ of equivariant \mathcal{D}-modules

Now we consider the situation when G acts on X with finitely many orbits $O_{0}, O_{1}, \ldots O_{n}$, where $\overline{O_{n}}=X$.

The category $\bmod _{G}\left(\mathcal{D}_{X}\right)$ of equivariant \mathcal{D}-modules

Now we consider the situation when G acts on X with finitely many orbits $O_{0}, O_{1}, \ldots O_{n}$, where $\overline{O_{n}}=X$.

- If $\mathcal{M} \in \bmod _{G}\left(\mathcal{D}_{X}\right)$, then \mathcal{M} is regular holonomic.

The category $\bmod _{G}\left(\mathcal{D}_{X}\right)$ of equivariant \mathcal{D}-modules

Now we consider the situation when G acts on X with finitely many orbits $O_{0}, O_{1}, \ldots O_{n}$, where $\overline{O_{n}}=X$.

- If $\mathcal{M} \in \bmod _{G}\left(\mathcal{D}_{X}\right)$, then \mathcal{M} is regular holonomic.
- For each orbit $O \cong G / H$, we have $\bmod _{G}\left(\mathcal{D}_{O}\right) \cong \operatorname{Rep}\left(H / H^{0}\right)$ (here H / H^{0} is the component group of O).

The category $\bmod _{G}\left(\mathcal{D}_{X}\right)$ of equivariant \mathcal{D}-modules

Now we consider the situation when G acts on X with finitely many orbits $O_{0}, O_{1}, \ldots O_{n}$, where $\overline{O_{n}}=X$.

- If $\mathcal{M} \in \bmod _{G}\left(\mathcal{D}_{X}\right)$, then \mathcal{M} is regular holonomic.
- For each orbit $O \cong G / H$, we have $\bmod _{G}\left(\mathcal{D}_{O}\right) \cong \operatorname{Rep}\left(H / H^{0}\right)$ (here H / H^{0} is the component group of O).
- Hence, there are finitely many simples in $\bmod _{G}\left(\mathcal{D}_{X}\right)$, parametrized by $\left(O_{p}, V\right)$, with $0 \leq p \leq n$ and V an irrep. of the component group of O_{p}.

The category $\bmod _{G}\left(\mathcal{D}_{X}\right)$ of equivariant \mathcal{D}-modules

Now we consider the situation when G acts on X with finitely many orbits $O_{0}, O_{1}, \ldots O_{n}$, where $\overline{O_{n}}=X$.

- If $\mathcal{M} \in \bmod _{G}\left(\mathcal{D}_{X}\right)$, then \mathcal{M} is regular holonomic.
- For each orbit $O \cong G / H$, we have $\bmod _{G}\left(\mathcal{D}_{O}\right) \cong \operatorname{Rep}\left(H / H^{0}\right)$ (here H / H^{0} is the component group of O).
- Hence, there are finitely many simples in $\bmod _{G}\left(\mathcal{D}_{X}\right)$, parametrized by $\left(O_{p}, V\right)$, with $0 \leq p \leq n$ and V an irrep. of the component group of O_{p}.
- The category $\bmod _{G}\left(\mathcal{D}_{X}\right)$ is equivalent to the category of finite-dimensional representations of a quiver (with relations) [Vilonen '94] [L., Walther '19].

The case of $m \times n$ matrices

Take $m \geq n \geq 1$ and let $X=\mathbb{C}^{m \times n}$ be space of $m \times n$ matrices, equipped with the action of the $G=G L_{m}(\mathbb{C}) \times G L_{n}(\mathbb{C})$.

The case of $m \times n$ matrices

Take $m \geq n \geq 1$ and let $X=\mathbb{C}^{m \times n}$ be space of $m \times n$ matrices, equipped with the action of the $G=G L_{m}(\mathbb{C}) \times G L_{n}(\mathbb{C})$.

- $X=\bigcup_{p=0}^{n} O_{p}$, where O_{p} is the G-orbit of matrices of rank p.

The case of $m \times n$ matrices

Take $m \geq n \geq 1$ and let $X=\mathbb{C}^{m \times n}$ be space of $m \times n$ matrices, equipped with the action of the $G=G L_{m}(\mathbb{C}) \times G L_{n}(\mathbb{C})$.

- $X=\bigcup_{p=0}^{n} O_{p}$, where O_{p} is the G-orbit of matrices of rank p.
- We have the simples $D_{0}, D_{1}, \ldots, D_{n}$ in $\bmod _{G}\left(\mathcal{D}_{X}\right)$ corresponding to orbits (all stabilizers are connected). Here $D_{0}=\mathcal{D}_{X} /\left(x_{1}, \ldots, x_{d}\right)=: E$ and $D_{n}=\mathcal{O}_{X}=: S$.

The case of $m \times n$ matrices

Take $m \geq n \geq 1$ and let $X=\mathbb{C}^{m \times n}$ be space of $m \times n$ matrices, equipped with the action of the $G=G L_{m}(\mathbb{C}) \times G L_{n}(\mathbb{C})$.

- $X=\bigcup_{p=0}^{n} O_{p}$, where O_{p} is the G-orbit of matrices of rank p.
- We have the simples $D_{0}, D_{1}, \ldots, D_{n}$ in $\bmod _{G}\left(\mathcal{D}_{X}\right)$ corresponding to orbits (all stabilizers are connected). Here $D_{0}=\mathcal{D}_{X} /\left(x_{1}, \ldots, x_{d}\right)=: E$ and $D_{n}=\mathcal{O}_{X}=: S$.
- When $m \neq n$, then the category $\bmod _{G}\left(\mathcal{D}_{X}\right)$ is semi-simple.

The square case

When $m=n$, the roots of the Bernstein-Sato polynomial of the determinant give a filtration in $\bmod _{G}\left(\mathcal{D}_{X}\right)$:

$$
0 \subsetneq S \subsetneq\left\langle\operatorname{det}^{-1}\right\rangle_{\mathcal{D}} \subsetneq \cdots \subsetneq\left\langle\operatorname{det}^{-n}\right\rangle_{\mathcal{D}}=S_{\operatorname{det}}
$$

The square case

When $m=n$, the roots of the Bernstein-Sato polynomial of the determinant give a filtration in $\bmod _{G}\left(\mathcal{D}_{X}\right)$:

$$
0 \subsetneq S \subsetneq\left\langle\operatorname{det}^{-1}\right\rangle_{\mathcal{D}} \subsetneq \cdots \subsetneq\left\langle\operatorname{det}^{-n}\right\rangle_{\mathcal{D}}=S_{\operatorname{det}}
$$

Simples are given by the successive quotients $(0 \leq p<n)$:

$$
D_{p} \cong \frac{\left\langle\operatorname{det}^{p-n}\right\rangle}{\left\langle\operatorname{det}^{p+1-n}\right\rangle}, \quad D_{n}=S
$$

The square case

When $m=n$, the roots of the Bernstein-Sato polynomial of the determinant give a filtration in $\bmod _{G}\left(\mathcal{D}_{X}\right)$:

$$
0 \subsetneq S \subsetneq\left\langle\operatorname{det}^{-1}\right\rangle_{\mathcal{D}} \subsetneq \cdots \subsetneq\left\langle\operatorname{det}^{-n}\right\rangle_{\mathcal{D}}=S_{\operatorname{det}}
$$

Simples are given by the successive quotients $(0 \leq p<n)$:

$$
D_{p} \cong \frac{\left\langle\operatorname{det}^{p-n}\right\rangle}{\left\langle\operatorname{det}^{p+1-n}\right\rangle}, \quad D_{n}=S .
$$

The category $\bmod _{G}\left(\mathcal{D}_{X}\right)$ is given by the quiver

$$
\widehat{A A}_{n}: \quad(0) \rightleftarrows(1) \rightleftarrows \cdots \rightleftarrows(n-1) \rightleftarrows(n),
$$

where all the 2-cycles are zero. [L ., Walther '19]

The square case

When $m=n$, the roots of the Bernstein-Sato polynomial of the determinant give a filtration in $\bmod _{G}\left(\mathcal{D}_{X}\right)$:

$$
0 \subsetneq S \subsetneq\left\langle\operatorname{det}^{-1}\right\rangle_{\mathcal{D}} \subsetneq \cdots \subsetneq\left\langle\operatorname{det}^{-n}\right\rangle_{\mathcal{D}}=S_{\operatorname{det}}
$$

Simples are given by the successive quotients $(0 \leq p<n)$:

$$
D_{p} \cong \frac{\left\langle\operatorname{det}^{p-n}\right\rangle}{\left\langle\operatorname{det}^{p+1-n}\right\rangle}, \quad D_{n}=S .
$$

The category $\bmod _{G}\left(\mathcal{D}_{X}\right)$ is given by the quiver

$$
\widehat{A A}_{n}: \quad(0) \rightleftarrows(1) \rightleftarrows \cdots \rightleftarrows(n-1) \rightleftarrows(n),
$$

where all the 2-cycles are zero. [L ., Walther '19]
$\widehat{A A}_{n}$ has finitely many indecomposable representations!

Spherical varieties

Let G be a complex reductive group and B a Borel subgroup. We say X is a spherical variety, if B acts on X with finitely many orbits.

Spherical varieties

Let G be a complex reductive group and B a Borel subgroup. We say X is a spherical variety, if B acts on X with finitely many orbits.
Examples: Flag varieties, symmetric spaces, space of $m \times n$ matrices, symmetric matrices, skew-symmetric matrices.

Spherical varieties

Let G be a complex reductive group and B a Borel subgroup. We say X is a spherical variety, if B acts on X with finitely many orbits.
Examples: Flag varieties, symmetric spaces, space of $m \times n$ matrices, symmetric matrices, skew-symmetric matrices.

Theorem (L., Walther '19)

Let X be a spherical variety of G, and \mathcal{M} a G-equivariant simple \mathcal{D}-module. Then $\Gamma(X, \mathcal{M})$ has a multiplicity-free decomposition into irreducible G-modules (i.e. an irreducible G-module appears at most once). Moreover, if $\Gamma(X, \mathcal{M}) \neq 0$ then the characteristic cycle of \mathcal{M} is also multiplicity-free.

Spherical varieties

Let G be a complex reductive group and B a Borel subgroup. We say X is a spherical variety, if B acts on X with finitely many orbits.
Examples: Flag varieties, symmetric spaces, space of $m \times n$ matrices, symmetric matrices, skew-symmetric matrices.

Theorem (L., Walther '19)

Let X be a spherical variety of G, and \mathcal{M} a G-equivariant simple \mathcal{D}-module. Then $\Gamma(X, \mathcal{M})$ has a multiplicity-free decomposition into irreducible G-modules (i.e. an irreducible G-module appears at most once). Moreover, if $\Gamma(X, \mathcal{M}) \neq 0$ then the characteristic cycle of \mathcal{M} is also multiplicity-free.

Some formulas for characters of equivariant \mathcal{D}-modules are calculated (for some non-spherical representations as well).

A classification result

The irreducible spherical representations have been classified by [Sato-Kimura '77] and [Kac '80].

Theorem (L., Walther '19)

Let X an irreducible G-spherical representation. Then $\bmod _{G}\left(\mathcal{D}_{X}\right)$ is given by a disjoint union of quivers of type $\widehat{A A}_{n}$, except in one case, when $X=\mathbb{C}^{4 \times 4}$ and $G=\mathrm{Sp}_{4} \times \mathrm{GL}_{4}$, when the quiver is

with all 2-cycles zero, and all compositions with the arrows α or β are zero.

A non-spherical example: binary cubic forms

$X=\operatorname{Sym}^{3} \mathbb{C}^{2}, G=\mathrm{GL}_{2}(\mathbb{C})$. There are only 4 orbits, but 14 simple equivariant \mathcal{D}-modules (stabilizers not connected).

Theorem (L., Raicu, Weyman '19)

The quiver of the category $\bmod _{G}\left(\mathcal{D}_{X}\right)$ has a connected component

with relations given by all 2-cycles and all non-diagonal compositions of two arrows.

An application: Local cohomology

Let Z be subvariety of X, and \mathcal{M} any \mathcal{O}_{X}-module. $\mathcal{H}_{Z}^{0}(\mathcal{M})=$ sheaf of sections of M with support in Z.

An application: Local cohomology

Let Z be subvariety of X, and \mathcal{M} any \mathcal{O}_{X}-module. $\mathcal{H}_{Z}^{0}(\mathcal{M})=$ sheaf of sections of M with support in Z.
$\mathcal{H}_{Z}^{0}(-)$ is left exact; consider its right derived functors $\mathcal{H}_{Z}^{i}(-)$ for $i \geq 0$.

An application: Local cohomology

Let Z be subvariety of X, and \mathcal{M} any \mathcal{O}_{X}-module. $\mathcal{H}_{Z}^{0}(\mathcal{M})=$ sheaf of sections of M with support in Z.
$\mathcal{H}_{Z}^{0}(-)$ is left exact; consider its right derived functors $\mathcal{H}_{Z}^{i}(-)$ for $i \geq 0$.

If M is a \mathcal{D}-module, then so is $\mathcal{H}_{Z}^{i}(M)$. If moreover Z is G-stable and \mathcal{M} is equivariant, then so is $\mathcal{H}_{Z}^{i}(\mathcal{M})$.
A general goal: Describe the \mathcal{D}-modules $\mathcal{H}_{Z}^{i}\left(\mathcal{O}_{X}\right)$ for any $i \geq 0$.

Example: back to matrices

$X=\mathbb{C}^{m \times n}$ be space of $m \times n$ matrices, equipped with the action of the $G=\mathrm{GL}_{m}(\mathbb{C}) \times \mathrm{GL}_{n}(\mathbb{C})$, and $O_{i}=$ set of matrices of rank i.

Example: back to matrices

$X=\mathbb{C}^{m \times n}$ be space of $m \times n$ matrices, equipped with the action of the $G=G L_{m}(\mathbb{C}) \times \mathrm{GL}_{n}(\mathbb{C})$, and $O_{i}=$ set of matrices of rank i.
When $m \neq n$, the category $\bmod _{G}\left(\mathcal{D}_{X}\right)$ is semi-simple, so each $H_{\bar{O}_{t}}^{j}\left(D_{p}\right)$ is a direct sum of D_{0}, \ldots, D_{n} (formula in [L., Raicu '18]).

Example: back to matrices

$X=\mathbb{C}^{m \times n}$ be space of $m \times n$ matrices, equipped with the action of the $G=\mathrm{GL}_{m}(\mathbb{C}) \times \mathrm{GL}_{n}(\mathbb{C})$, and $O_{i}=$ set of matrices of rank i.
When $m \neq n$, the category $\bmod _{G}\left(\mathcal{D}_{X}\right)$ is semi-simple, so each $H_{\bar{O}_{t}}^{j}\left(D_{p}\right)$ is a direct sum of D_{0}, \ldots, D_{n} (formula in [L., Raicu '18]).
In the square case $m=n$, the indecomposables of main interest:

$$
\begin{aligned}
& Q_{p}:=\frac{S_{\text {det }}}{\left\langle\operatorname{det}^{p+1-\eta}\right\rangle} \in \bmod _{G}\left(\mathcal{D}_{X}\right) \text { corresponds in } \operatorname{rep}\left(\widehat{A A}_{n}\right) \text { to }
\end{aligned}
$$

Example: back to matrices

$X=\mathbb{C}^{m \times n}$ be space of $m \times n$ matrices, equipped with the action of the $G=G L_{m}(\mathbb{C}) \times G L_{n}(\mathbb{C})$, and $O_{i}=$ set of matrices of rank i.
When $m \neq n$, the category $\bmod _{G}\left(\mathcal{D}_{X}\right)$ is semi-simple, so each $H_{\bar{O}_{t}}^{j}\left(D_{p}\right)$ is a direct sum of D_{0}, \ldots, D_{n} (formula in [L., Raicu '18]).
In the square case $m=n$, the indecomposables of main interest:

$$
\begin{aligned}
& Q_{p}:=\frac{S_{\text {det }}}{\left\langle\operatorname{det}^{p+1-\eta}\right\rangle} \in \bmod _{G}\left(\mathcal{D}_{X}\right) \text { corresponds in } \operatorname{rep}\left(\widehat{A A}_{n}\right) \text { to }
\end{aligned}
$$

Let $\operatorname{add}(Q)$ denote the subcategory of $\bmod _{G}\left(\mathcal{D}_{X}\right)$ formed of \mathcal{D}-modules that are direct sums of $Q_{0}, Q_{1}, \ldots Q_{n-1}$.

Direct sum decomposition in square case

$$
q \text {-binomial: }\binom{a}{b}_{q}=\frac{\left(1-q^{a}\right) \cdot\left(1-q^{a-1}\right) \cdots\left(1-q^{a-b+1}\right)}{\left(1-q^{b}\right) \cdot\left(1-q^{b-1}\right) \cdots(1-q)}
$$

Theorem (L., Raicu '18)

We have that $H_{O_{t}}^{j}\left(D_{p}\right) \in \operatorname{add}(Q)$ (with $\left.t<p\right)$. Explicitly:

$$
\sum_{j \geq 0}\left[H_{\bar{o}_{t}}^{j}\left(D_{P}\right)\right] \cdot q^{j}=\sum_{s=0}^{t}\left[Q_{s}\right] \cdot q^{(p-t)^{2}} \cdot m_{s}\left(q^{2}\right),
$$

where $m_{t}(q)=\binom{n-t}{p-t}_{q}$, and for $s=0, \cdots, t-1$

$$
m_{s}(q)=\binom{n-s}{p-s}_{q} \cdot\binom{p-1-s}{t-s}_{q}-\binom{n-s-1}{p-s-1}_{q} \cdot\binom{p-2-s}{t-1-s}_{q}
$$

We also show that $H_{\bar{O}_{t}}^{j}\left(Q_{p}\right) \in \operatorname{add}(Q)$ and give an explicit formula. Hence, we can calculate all iterations $H_{\frac{O_{t_{1}}}{i_{1}}}\left(H_{\bar{O}_{t_{2}}}^{i_{2}}\left(\cdots H_{\bar{O}_{t_{r}}}^{i_{r}}\left(D_{p}\right) \cdots\right)\right)$

We also show that $H_{\bar{O}_{t}}^{j}\left(Q_{p}\right) \in \operatorname{add}(Q)$ and give an explicit formula. Hence, we can calculate all iterations $H_{O_{O_{1}}}^{i_{1}}\left(H_{\bar{O}_{t_{2}}}^{i_{2}}\left(\cdots H_{\bar{O}_{t_{r}}}^{i_{r}}\left(D_{p}\right) \cdots\right)\right)$ In particular, we determine the Lyubeznik numbers $\lambda_{i, j}\left(\bar{O}_{p}\right)$ of determinantal varieties, given by

$$
H_{\{0\}}^{i} H_{\bar{O}_{p}}^{m n-j}(S)=E^{\oplus \lambda_{i, j}\left(\bar{O}_{p}\right)}
$$

This answers a question of M. Hochster.

We also show that $H_{O_{t}}^{j}\left(Q_{p}\right) \in \operatorname{add}(Q)$ and give an explicit formula. Hence, we can calculate all iterations $\left.H_{\frac{O_{t_{1}}}{i_{1}}}^{i_{\bar{O}_{t_{2}}}}\left(\cdots H_{\bar{O}_{t_{r}}}^{i_{r}}\left(D_{p}\right) \cdots\right)\right)$ In particular, we determine the Lyubeznik numbers $\lambda_{i, j}\left(\bar{O}_{p}\right)$ of determinantal varieties, given by

$$
H_{\{0\}}^{i} H_{\bar{O}_{p}}^{m n-j}(S)=E^{\oplus \lambda_{i, j}\left(\bar{O}_{p}\right)}
$$

This answers a question of M . Hochster.
The Lyubeznik numbers are truly invariants of the (projective) determinantal varieties themselves, i.e. they do not depend on the choice of embedding into the projective space.

Lyubeznik numbers in the square case

Theorem (L., Raicu '18)

We have $\sum \lambda_{i, j}\left(\bar{O}_{n-1}\right) \cdot q^{i} \cdot w^{j}=(q \cdot w)^{n^{2}-1}$ and for $0 \leq p \leq n-2$ we have

$$
\begin{gathered}
\sum_{i, j \geq 0} \lambda_{i, j}\left(\bar{O}_{p}\right) \cdot q^{i} \cdot w^{j}= \\
=\sum_{s=0}^{p} q^{s^{2}+2 s} \cdot\binom{n-1}{s}_{q^{2}} \cdot w^{p^{2}+2 p+s \cdot(2 n-2 p-2)} \cdot\binom{n-2-s}{p-s}_{w^{2}}
\end{gathered}
$$

Similar methods were applied to describe local cohomology and Lyubeznik numbers for other spaces of interest.

