Equivariant \mathcal{D} -modules on varieties with finitely many orbits

András Cristian Lőrincz

Max Planck Institute for Mathematics in the Sciences

August 2019, Zürich

András Cristian Lőrincz Equivariant D-modules on varieties with finitely many orbits

Outline

- 2 Example: the space of $m \times n$ matrices
- 3 Spherical varieties
- 4 Local cohomology

Basic notation

• Let X be complex, irreducible, smooth algebraic variety.

Basic notation

- Let X be complex, irreducible, smooth algebraic variety.
- Let \mathcal{D}_X the sheaf of differential operators on X.

Basic notation

- Let X be complex, irreducible, smooth algebraic variety.
- Let \mathcal{D}_X the sheaf of differential operators on X.
- When $X = \mathbb{C}^d$, \mathcal{D}_X is the Weyl algebra

$$\mathcal{D}_X = \langle x_1, \ldots, x_d, \partial_1, \ldots, \partial_d \rangle,$$

with relations $[\partial_i, x_j] = \delta_{ij}$, where δ_{ij} is the Kronecker delta.

Basic notation

- Let X be complex, irreducible, smooth algebraic variety.
- Let \mathcal{D}_X the sheaf of differential operators on X.
- When $X = \mathbb{C}^d$, \mathcal{D}_X is the Weyl algebra

$$\mathcal{D}_X = \langle x_1, \ldots, x_d, \partial_1, \ldots, \partial_d \rangle,$$

with relations $[\partial_i, x_j] = \delta_{ij}$, where δ_{ij} is the Kronecker delta.

• A \mathcal{D} -module is throughout a coherent left \mathcal{D}_X -module.

Equivariant \mathcal{D} -modules

• Assume G is a connected affine algebraic group acting on X.

 $m: G \times X \to X$

Equivariant \mathcal{D} -modules

• Assume G is a connected affine algebraic group acting on X.

$$m: G \times X \to X$$

D_X-module *M* is (strongly) *equivariant* if we have an isomorphism *m*^{*}(*M*) ≅ *p*^{*}₂(*M*) of *D_{G×X}*-modules satisfying the usual cocycle condition.

Equivariant \mathcal{D} -modules

• Assume G is a connected affine algebraic group acting on X.

$$m: G \times X \to X$$

- *D_X*-module *M* is (strongly) *equivariant* if we have an isomorphism *m*^{*}(*M*) ≅ *p*^{*}₂(*M*) of *D_{G×X}*-modules satisfying the usual cocycle condition.
- Differentiating the action of G on X gives vector fields on X, so a map g → Γ(X, D_X). When X is affine, equivariance of a D_X-module means that the action of g via g → D_X can be integrated to an algebraic G-action.

Equivariant \mathcal{D} -modules

• Assume G is a connected affine algebraic group acting on X.

$$m: G \times X \to X$$

- *D_X*-module *M* is (strongly) *equivariant* if we have an isomorphism *m*^{*}(*M*) ≅ *p*^{*}₂(*M*) of *D_{G×X}*-modules satisfying the usual cocycle condition.
- Differentiating the action of G on X gives vector fields on X, so a map g → Γ(X, D_X). When X is affine, equivariance of a D_X-module means that the action of g via g → D_X can be integrated to an algebraic G-action.
- \mathcal{O}_X is equivariant, but \mathcal{D}_X is not!

Equivariant \mathcal{D} -modules

• Assume G is a connected affine algebraic group acting on X.

$$m: G \times X \to X$$

- *D_X*-module *M* is (strongly) *equivariant* if we have an isomorphism *m*^{*}(*M*) ≅ *p*^{*}₂(*M*) of *D_{G×X}*-modules satisfying the usual cocycle condition.
- Differentiating the action of G on X gives vector fields on X, so a map g → Γ(X, D_X). When X is affine, equivariance of a D_X-module means that the action of g via g → D_X can be integrated to an algebraic G-action.
- \mathcal{O}_X is equivariant, but \mathcal{D}_X is not!
- Let mod_G(D_X) denote the full subcategory of equivariant D-modules. It is closed under subquotients.

The category $\operatorname{mod}_{G}(\mathcal{D}_{X})$ of equivariant \mathcal{D} -modules

The category $mod_G(\mathcal{D}_X)$ of equivariant \mathcal{D} -modules

Now we consider the situation when *G* acts on *X* with *finitely* many orbits O_0, O_1, \ldots, O_n , where $\overline{O_n} = X$.

• If $\mathcal{M} \in \text{mod}_{\mathcal{G}}(\mathcal{D}_X)$, then \mathcal{M} is regular holonomic.

The category $mod_G(\mathcal{D}_X)$ of equivariant \mathcal{D} -modules

- If $\mathcal{M} \in \mathsf{mod}_{G}(\mathcal{D}_{X})$, then \mathcal{M} is regular holonomic.
- For each orbit O ≅ G/H, we have mod_G(D_O) ≅ Rep(H/H⁰) (here H/H⁰ is the component group of O).

The category $mod_G(\mathcal{D}_X)$ of equivariant \mathcal{D} -modules

- If $\mathcal{M} \in \mathsf{mod}_{\mathcal{G}}(\mathcal{D}_X)$, then \mathcal{M} is regular holonomic.
- For each orbit O ≅ G/H, we have mod_G(D_O) ≅ Rep(H/H⁰) (here H/H⁰ is the component group of O).
- Hence, there are finitely many simples in mod_G(D_X), parametrized by (O_p, V), with 0 ≤ p ≤ n and V an irrep. of the component group of O_p.

The category $mod_G(\mathcal{D}_X)$ of equivariant \mathcal{D} -modules

- If $\mathcal{M} \in \mathsf{mod}_{G}(\mathcal{D}_{X})$, then \mathcal{M} is regular holonomic.
- For each orbit O ≅ G/H, we have mod_G(D_O) ≅ Rep(H/H⁰) (here H/H⁰ is the component group of O).
- Hence, there are finitely many simples in mod_G(D_X), parametrized by (O_p, V), with 0 ≤ p ≤ n and V an irrep. of the component group of O_p.
- The category mod_G(D_X) is equivalent to the category of finite-dimensional representations of a quiver (with relations) [Vilonen '94] [L., Walther '19].

The case of $m \times n$ matrices

The case of $m \times n$ matrices

•
$$X = \bigcup_{p=0}^{n} O_p$$
, where O_p is the *G*-orbit of matrices of rank p .

The case of $m \times n$ matrices

- $X = \bigcup_{p=0}^{n} O_p$, where O_p is the *G*-orbit of matrices of rank p.
- We have the simples D_0, D_1, \ldots, D_n in $\text{mod}_G(\mathcal{D}_X)$ corresponding to orbits (all stabilizers are connected). Here $D_0 = \mathcal{D}_X/(x_1, \ldots, x_d) =: E$ and $D_n = \mathcal{O}_X =: S$.

The case of $m \times n$ matrices

- $X = \bigcup_{p=0}^{n} O_p$, where O_p is the *G*-orbit of matrices of rank p .
- We have the simples D₀, D₁,..., D_n in mod_G(D_X) corresponding to orbits (all stabilizers are connected). Here D₀ = D_X/(x₁,..., x_d) =: E and D_n = O_X =: S.
- When $m \neq n$, then the category $\text{mod}_G(\mathcal{D}_X)$ is semi-simple.

The square case

When m = n, the roots of the Bernstein-Sato polynomial of the determinant give a filtration in $mod_G(\mathcal{D}_X)$:

$$0 \subsetneq S \subsetneq \langle \det^{-1} \rangle_{\mathcal{D}} \subsetneq \cdots \subsetneq \langle \det^{-n} \rangle_{\mathcal{D}} = S_{\det}$$

The square case

When m = n, the roots of the Bernstein-Sato polynomial of the determinant give a filtration in $mod_G(\mathcal{D}_X)$:

$$0 \subsetneq S \subsetneq \langle \det^{-1} \rangle_{\mathcal{D}} \subsetneq \cdots \subsetneq \langle \det^{-n} \rangle_{\mathcal{D}} = S_{\det}$$

Simples are given by the successive quotients ($0 \le p < n$):

$$D_p \cong rac{\langle \det^{p-n} \rangle}{\langle \det^{p+1-n} \rangle}, \quad D_n = S.$$

The square case

When m = n, the roots of the Bernstein-Sato polynomial of the determinant give a filtration in $mod_G(\mathcal{D}_X)$:

$$0 \subsetneq S \subsetneq \langle \det^{-1} \rangle_{\mathcal{D}} \subsetneq \cdots \subsetneq \langle \det^{-n} \rangle_{\mathcal{D}} = S_{\det}$$

Simples are given by the successive quotients ($0 \le p < n$):

$$D_p \cong rac{\langle \det^{p-n}
angle}{\langle \det^{p+1-n}
angle}, \quad D_n = S.$$

The category $mod_G(\mathcal{D}_X)$ is given by the quiver

$$\widehat{AA}_n: \quad (0) \xrightarrow{\longrightarrow} (1) \xrightarrow{\longrightarrow} \cdots \xrightarrow{\longrightarrow} (n-1) \xrightarrow{\longrightarrow} (n) ,$$

where all the 2-cycles are zero. [L., Walther '19]

The square case

When m = n, the roots of the Bernstein-Sato polynomial of the determinant give a filtration in $mod_G(\mathcal{D}_X)$:

$$0 \subsetneq S \subsetneq \langle \det^{-1} \rangle_{\mathcal{D}} \subsetneq \cdots \subsetneq \langle \det^{-n} \rangle_{\mathcal{D}} = S_{\det}$$

Simples are given by the successive quotients ($0 \le p < n$):

$$D_{p}\cong rac{\langle \det^{p-n}
angle}{\langle \det^{p+1-n}
angle}, \quad D_{n}=S.$$

The category $mod_G(\mathcal{D}_X)$ is given by the quiver

$$\widehat{AA}_n: \quad (0) \xrightarrow{\longrightarrow} (1) \xrightarrow{\longrightarrow} \cdots \xrightarrow{\longrightarrow} (n-1) \xrightarrow{\longrightarrow} (n) ,$$

where all the 2-cycles are zero. [L., Walther '19] \widehat{AA}_n has finitely many indecomposable representations!

Spherical varieties

Let G be a complex reductive group and B a Borel subgroup. We say X is a spherical variety, if B acts on X with finitely many orbits.

Spherical varieties

Let G be a complex reductive group and B a Borel subgroup. We say X is a spherical variety, if B acts on X with finitely many orbits.

Examples: Flag varieties, symmetric spaces, space of $m \times n$ matrices, symmetric matrices, skew-symmetric matrices.

Spherical varieties

Let G be a complex reductive group and B a Borel subgroup. We say X is a spherical variety, if B acts on X with finitely many orbits.

Examples: Flag varieties, symmetric spaces, space of $m \times n$ matrices, symmetric matrices, skew-symmetric matrices.

Theorem (L., Walther '19)

Let X be a spherical variety of G, and \mathcal{M} a G-equivariant simple \mathcal{D} -module. Then $\Gamma(X, \mathcal{M})$ has a multiplicity-free decomposition into irreducible G-modules (i.e. an irreducible G-module appears at most once). Moreover, if $\Gamma(X, \mathcal{M}) \neq 0$ then the characteristic cycle of \mathcal{M} is also multiplicity-free.

Spherical varieties

Let G be a complex reductive group and B a Borel subgroup. We say X is a spherical variety, if B acts on X with finitely many orbits.

Examples: Flag varieties, symmetric spaces, space of $m \times n$ matrices, symmetric matrices, skew-symmetric matrices.

Theorem (L., Walther '19)

Let X be a spherical variety of G, and \mathcal{M} a G-equivariant simple \mathcal{D} -module. Then $\Gamma(X, \mathcal{M})$ has a multiplicity-free decomposition into irreducible G-modules (i.e. an irreducible G-module appears at most once). Moreover, if $\Gamma(X, \mathcal{M}) \neq 0$ then the characteristic cycle of \mathcal{M} is also multiplicity-free.

Some formulas for characters of equivariant \mathcal{D} -modules are calculated (for some non-spherical representations as well).

A classification result

The irreducible spherical representations have been classified by [Sato-Kimura '77] and [Kac '80].

Theorem (L., Walther '19)

Let X an irreducible G-spherical representation. Then $\text{mod}_G(\mathcal{D}_X)$ is given by a disjoint union of quivers of type \widehat{AA}_n , except in one case, when $X = \mathbb{C}^{4 \times 4}$ and $G = \text{Sp}_4 \times \text{GL}_4$, when the quiver is

$$(6)$$

$$\beta \not\mid \alpha$$

$$(1) \rightleftharpoons (2) \rightleftharpoons (3) \rightleftharpoons (4) \rightleftharpoons (5)$$

with all 2-cycles zero, and all compositions with the arrows α or β are zero.

A non-spherical example: binary cubic forms

 $X = \text{Sym}^3 \mathbb{C}^2$, $G = \text{GL}_2(\mathbb{C})$. There are only 4 orbits, but 14 simple equivariant \mathcal{D} -modules (stabilizers not connected).

Theorem (L., Raicu, Weyman '19)

The quiver of the category $mod_G(\mathcal{D}_X)$ has a connected component

with relations given by all 2-cycles and all non-diagonal compositions of two arrows.

An application: Local cohomology

Let Z be subvariety of X, and \mathcal{M} any \mathcal{O}_X -module. $\mathcal{H}^0_Z(\mathcal{M}) =$ sheaf of sections of M with support in Z.

An application: Local cohomology

Let Z be subvariety of X, and \mathcal{M} any \mathcal{O}_X -module. $\mathcal{H}^0_Z(\mathcal{M}) =$ sheaf of sections of M with support in Z.

 $\mathcal{H}^0_Z(-)$ is left exact; consider its right derived functors $\mathcal{H}^i_Z(-)$ for $i \ge 0$.

An application: Local cohomology

Let Z be subvariety of X, and \mathcal{M} any \mathcal{O}_X -module. $\mathcal{H}^0_Z(\mathcal{M}) =$ sheaf of sections of M with support in Z.

 $\mathcal{H}^0_Z(-)$ is left exact; consider its right derived functors $\mathcal{H}^i_Z(-)$ for $i \ge 0$.

If M is a \mathcal{D} -module, then so is $\mathcal{H}^i_Z(M)$. If moreover Z is G-stable and \mathcal{M} is equivariant, then so is $\mathcal{H}^i_Z(\mathcal{M})$.

A general goal: Describe the \mathcal{D} -modules $\mathcal{H}^i_Z(\mathcal{O}_X)$ for any $i \ge 0$.

Example: back to matrices

 $X = \mathbb{C}^{m \times n}$ be space of $m \times n$ matrices, equipped with the action of the $G = GL_m(\mathbb{C}) \times GL_n(\mathbb{C})$, and $O_i =$ set of matrices of rank *i*.

Example: back to matrices

 $X = \mathbb{C}^{m \times n}$ be space of $m \times n$ matrices, equipped with the action of the $G = \operatorname{GL}_m(\mathbb{C}) \times \operatorname{GL}_n(\mathbb{C})$, and $O_i =$ set of matrices of rank *i*. When $m \neq n$, the category $\operatorname{mod}_G(\mathcal{D}_X)$ is semi-simple, so each $H^j_{\overline{O}_t}(D_p)$ is a direct sum of D_0, \ldots, D_n (formula in [L., Raicu '18]).

Example: back to matrices

 $X = \mathbb{C}^{m \times n}$ be space of $m \times n$ matrices, equipped with the action of the $G = \operatorname{GL}_m(\mathbb{C}) \times \operatorname{GL}_n(\mathbb{C})$, and $O_i =$ set of matrices of rank *i*. When $m \neq n$, the category $\operatorname{mod}_G(\mathcal{D}_X)$ is semi-simple, so each $H^j_{\overline{O}_t}(D_p)$ is a direct sum of D_0, \ldots, D_n (formula in [L., Raicu '18]). In the square case m = n, the indecomposables of main interest:

$$Q_{p} := \frac{S_{\det}}{\langle \det^{p+1-n} \rangle} \in \operatorname{mod}_{G}(\mathcal{D}_{X}) \text{ corresponds in } \operatorname{rep}(\widehat{AA}_{n}) \text{ to}$$
$$\mathbb{C} \xrightarrow{1}_{\underbrace{0}} \mathbb{C} \xrightarrow{1}_{\underbrace{0}} \cdots \xrightarrow{1}_{\underbrace{0}} \mathbb{C} \xrightarrow{0}_{\underbrace{0}} 0 \xrightarrow{0}_{\underbrace{0}} \cdots \xrightarrow{0}_{\underbrace{0}} 0 \quad (p \ 1's)$$

Example: back to matrices

 $X = \mathbb{C}^{m \times n}$ be space of $m \times n$ matrices, equipped with the action of the $G = \operatorname{GL}_m(\mathbb{C}) \times \operatorname{GL}_n(\mathbb{C})$, and $O_i = \operatorname{set}$ of matrices of rank *i*. When $m \neq n$, the category $\operatorname{mod}_G(\mathcal{D}_X)$ is semi-simple, so each $H^j_{\overline{O}_t}(D_p)$ is a direct sum of D_0, \ldots, D_n (formula in [L., Raicu '18]). In the square case m = n, the indecomposables of main interest:

$$Q_{p} := \frac{S_{\det}}{\langle \det^{p+1-n} \rangle} \in \operatorname{mod}_{G}(\mathcal{D}_{X}) \text{ corresponds in } \operatorname{rep}(\widehat{AA}_{n}) \text{ to}$$
$$\mathbb{C} \xrightarrow{1}_{\stackrel{\frown}{\longrightarrow} 0} \mathbb{C} \xrightarrow{1}_{\stackrel{\frown}{\longrightarrow} 0} \mathbb{C} \xrightarrow{0}_{\stackrel{\frown}{\longrightarrow} 0} 0 \xrightarrow{0}_{\stackrel{\frown}{\longrightarrow} 0} 0 \xrightarrow{0}_{\stackrel{\frown}{\longrightarrow} 0} 0 \xrightarrow{(p \ 1's)}$$

Let $\operatorname{add}(Q)$ denote the subcategory of $\operatorname{mod}_G(\mathcal{D}_X)$ formed of \mathcal{D} -modules that are direct sums of $Q_0, Q_1, \ldots, Q_{n-1}$.

Direct sum decomposition in square case

q-binomial:
$$\binom{a}{b}_q = \frac{(1-q^a) \cdot (1-q^{a-1}) \cdots (1-q^{a-b+1})}{(1-q^b) \cdot (1-q^{b-1}) \cdots (1-q)}$$

Theorem (L., Raicu '18)

We have that $H^{j}_{\overline{O}_{t}}(D_{p}) \in \operatorname{add}(Q)$ (with t < p). Explicitly:

$$\sum_{j\geq 0} [H^j_{\overline{O}_t}(D_p)] \cdot q^j = \sum_{s=0}^t [Q_s] \cdot q^{(p-t)^2} \cdot m_s(q^2),$$

where
$$m_t(q) = \binom{n-t}{p-t}_q$$
, and for $s = 0, \cdots, t-1$

$$m_s(q) = \binom{n-s}{p-s}_q \cdot \binom{p-1-s}{t-s}_q - \binom{n-s-1}{p-s-1}_q \cdot \binom{p-2-s}{t-1-s}_q$$

We also show that $H_{\overline{O}_t}^j(Q_p) \in \operatorname{add}(Q)$ and give an explicit formula. Hence, we can calculate all iterations $H_{\overline{O}_{t_1}}^{i_1}(H_{\overline{O}_{t_2}}^{i_2}(\cdots H_{\overline{O}_{t_r}}^{i_r}(D_p)\cdots))$

We also show that $H^{j}_{\overline{O}_{t}}(Q_{p}) \in \operatorname{add}(Q)$ and give an explicit formula. Hence, we can calculate all iterations $H^{i_{1}}_{\overline{O}_{t_{1}}}(H^{i_{2}}_{\overline{O}_{t_{2}}}(\cdots H^{i_{r}}_{\overline{O}_{t_{r}}}(D_{p})\cdots))$ In particular, we determine the Lyubeznik numbers $\lambda_{i,j}(\overline{O}_{p})$ of determinantal varieties, given by

$$H^{i}_{\{0\}}H^{mn-j}_{\overline{O}_{p}}(S)=E^{\oplus\lambda_{i,j}(\overline{O}_{p})}$$

This answers a question of M. Hochster.

We also show that $H^{j}_{\overline{O}_{t}}(Q_{p}) \in \operatorname{add}(Q)$ and give an explicit formula. Hence, we can calculate all iterations $H^{i_{1}}_{\overline{O}_{t_{1}}}(H^{i_{2}}_{\overline{O}_{t_{2}}}(\cdots H^{i_{r}}_{\overline{O}_{t_{r}}}(D_{p})\cdots))$ In particular, we determine the Lyubeznik numbers $\lambda_{i,j}(\overline{O}_{p})$ of determinantal varieties, given by

$$H^{i}_{\{0\}}H^{mn-j}_{\overline{O}_{p}}(S)=E^{\oplus\lambda_{i,j}(\overline{O}_{p})}$$

This answers a question of M. Hochster.

The Lyubeznik numbers are truly invariants of the (projective) determinantal varieties themselves, i.e. they do not depend on the choice of embedding into the projective space.

Lyubeznik numbers in the square case

Theorem (L., Raicu '18)

We have
$$\sum \lambda_{i,j}(\overline{O}_{n-1}) \cdot q^i \cdot w^j = (q \cdot w)^{n^2-1}$$
 and for $0 \le p \le n-2$ we have

$$\sum_{i,j\geq 0}\lambda_{i,j}(\overline{O}_{\mathcal{P}})\cdot q^i\cdot w^j =$$

$$= \sum_{s=0}^{p} q^{s^{2}+2s} \cdot \binom{n-1}{s}_{q^{2}} \cdot w^{p^{2}+2p+s\cdot(2n-2p-2)} \cdot \binom{n-2-s}{p-s}_{w^{2}}$$

Similar methods were applied to describe local cohomology and Lyubeznik numbers for other spaces of interest.