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Basic notation

Let X be complex, irreducible, smooth algebraic variety.

Let DX the sheaf of differential operators on X .

When X = Cd , DX is the Weyl algebra

DX = 〈x1, . . . , xd , ∂1, . . . , ∂d〉,

with relations [∂i , xj ] = δij , where δij is the Kronecker delta.

A D-module is throughout a coherent left DX -module.
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András Cristian Lőrincz Equivariant D-modules on varieties with finitely many orbits



Equivariant D-modules
Example: the space of m × n matrices

Spherical varieties
Local cohomology

Basic notation

Let X be complex, irreducible, smooth algebraic variety.

Let DX the sheaf of differential operators on X .

When X = Cd , DX is the Weyl algebra

DX = 〈x1, . . . , xd , ∂1, . . . , ∂d〉,

with relations [∂i , xj ] = δij , where δij is the Kronecker delta.

A D-module is throughout a coherent left DX -module.
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Equivariant D-modules

Assume G is a connected affine algebraic group acting on X .

m : G × X → X

DX -module M is (strongly) equivariant if we have an
isomorphism m∗(M) ∼= p∗2(M) of DG×X -modules satisfying
the usual cocycle condition.

Differentiating the action of G on X gives vector fields on X ,
so a map g→ Γ(X ,DX ). When X is affine, equivariance of a
DX -module means that the action of g via g→ DX can be
integrated to an algebraic G -action.

OX is equivariant, but DX is not!

Let modG (DX ) denote the full subcategory of equivariant
D-modules. It is closed under subquotients.
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András Cristian Lőrincz Equivariant D-modules on varieties with finitely many orbits



Equivariant D-modules
Example: the space of m × n matrices

Spherical varieties
Local cohomology

Equivariant D-modules

Assume G is a connected affine algebraic group acting on X .

m : G × X → X

DX -module M is (strongly) equivariant if we have an
isomorphism m∗(M) ∼= p∗2(M) of DG×X -modules satisfying
the usual cocycle condition.

Differentiating the action of G on X gives vector fields on X ,
so a map g→ Γ(X ,DX ). When X is affine, equivariance of a
DX -module means that the action of g via g→ DX can be
integrated to an algebraic G -action.

OX is equivariant, but DX is not!

Let modG (DX ) denote the full subcategory of equivariant
D-modules. It is closed under subquotients.
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The category modG (DX ) of equivariant D-modules

Now we consider the situation when G acts on X with finitely
many orbits O0,O1, . . .On, where On = X .

If M∈ modG (DX ), then M is regular holonomic.

For each orbit O ∼= G/H, we have modG (DO) ∼= Rep(H/H0)
(here H/H0 is the component group of O).

Hence, there are finitely many simples in modG (DX ),
parametrized by (Op,V ), with 0 ≤ p ≤ n and V an irrep. of
the component group of Op.

The category modG (DX ) is equivalent to the category of
finite-dimensional representations of a quiver (with relations)
[Vilonen ‘94] [L., Walther ‘19].
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The case of m × n matrices

Take m ≥ n ≥ 1 and let X = Cm×n be space of m × n matrices,
equipped with the action of the G = GLm(C)× GLn(C).

X =
⋃n

p=0 Op, where Op is the G -orbit of matrices of rank p .

We have the simples D0,D1, . . . ,Dn in modG (DX )
corresponding to orbits (all stabilizers are connected). Here
D0 = DX/(x1, . . . , xd) =: E and Dn = OX =: S .

When m 6= n, then the category modG (DX ) is semi-simple.

András Cristian Lőrincz Equivariant D-modules on varieties with finitely many orbits



Equivariant D-modules
Example: the space of m × n matrices

Spherical varieties
Local cohomology

The case of m × n matrices

Take m ≥ n ≥ 1 and let X = Cm×n be space of m × n matrices,
equipped with the action of the G = GLm(C)× GLn(C).

X =
⋃n

p=0 Op, where Op is the G -orbit of matrices of rank p .

We have the simples D0,D1, . . . ,Dn in modG (DX )
corresponding to orbits (all stabilizers are connected). Here
D0 = DX/(x1, . . . , xd) =: E and Dn = OX =: S .

When m 6= n, then the category modG (DX ) is semi-simple.
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The square case

When m = n, the roots of the Bernstein-Sato polynomial of the
determinant give a filtration in modG (DX ):

0 ( S ( 〈det−1〉D ( · · · ( 〈det−n〉D = Sdet

Simples are given by the successive quotients (0 ≤ p < n):

Dp
∼=
〈detp−n〉
〈detp+1−n〉

, Dn = S .

The category modG (DX ) is given by the quiver

ÂAn : (0) // (1)oo // · · ·oo // (n − 1)oo // (n)oo ,

where all the 2-cycles are zero. [L., Walther ‘19]

ÂAn has finitely many indecomposable representations!
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Spherical varieties

Let G be a complex reductive group and B a Borel subgroup. We
say X is a spherical variety, if B acts on X with finitely many
orbits.

Examples: Flag varieties, symmetric spaces, space of m × n
matrices, symmetric matrices, skew-symmetric matrices.

Theorem (L., Walther ’19)

Let X be a spherical variety of G , and M a G -equivariant simple
D-module. Then Γ(X ,M) has a multiplicity-free decomposition
into irreducible G -modules (i.e. an irreducible G -module appears
at most once). Moreover, if Γ(X ,M) 6= 0 then the characteristic
cycle of M is also multiplicity-free.

Some formulas for characters of equivariant D-modules are
calculated (for some non-spherical representations as well).
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András Cristian Lőrincz Equivariant D-modules on varieties with finitely many orbits



Equivariant D-modules
Example: the space of m × n matrices

Spherical varieties
Local cohomology

A classification result

The irreducible spherical representations have been classified by
[Sato-Kimura ’77] and [Kac ’80].

Theorem (L., Walther ’19)

Let X an irreducible G -spherical representation. Then modG (DX )

is given by a disjoint union of quivers of type ÂAn, except in one
case, when X = C4×4 and G = Sp4×GL4, when the quiver is

(6)

α

��
(1) // (2)oo // (3)

β

OO

oo // (4)oo // (5)oo

with all 2-cycles zero, and all compositions with the arrows α or β
are zero.
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A non-spherical example: binary cubic forms

X = Sym3 C2, G = GL2(C). There are only 4 orbits, but 14 simple
equivariant D-modules (stabilizers not connected).

Theorem (L., Raicu, Weyman ’19)

The quiver of the category modG (DX ) has a connected component

s
α1

��

d0

α2

��
p

β1

__
β2

??

β4
��

β3

��
q0

α4

??

e

α3

__

with relations given by all 2-cycles and all non-diagonal
compositions of two arrows.
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An application: Local cohomology

Let Z be subvariety of X , and M any OX -module. H0
Z (M) =

sheaf of sections of M with support in Z .

H0
Z (−) is left exact; consider its right derived functors Hi

Z (−) for
i ≥ 0.

If M is a D-module, then so is Hi
Z (M). If moreover Z is G -stable

and M is equivariant, then so is Hi
Z (M).

A general goal: Describe the D-modules Hi
Z (OX ) for any i ≥ 0.
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Example: back to matrices

X = Cm×n be space of m × n matrices, equipped with the action
of the G = GLm(C)× GLn(C), and Oi = set of matrices of rank i .

When m 6= n, the category modG (DX ) is semi-simple, so each
H j

Ot
(Dp) is a direct sum of D0, . . . ,Dn (formula in [L., Raicu ’18]).

In the square case m = n, the indecomposables of main interest:

Qp :=
Sdet

〈detp+1−n〉
∈ modG (DX ) corresponds in rep(ÂAn) to

C
1 // C
0
oo

1 // · · ·
0

oo
1 // C
0
oo

0 // 0
0
oo

0 // · · ·
0

oo
0 // 0
0
oo (p 1’s)

Let add(Q) denote the subcategory of modG (DX ) formed of
D-modules that are direct sums of Q0,Q1, . . .Qn−1.
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Example: back to matrices

X = Cm×n be space of m × n matrices, equipped with the action
of the G = GLm(C)× GLn(C), and Oi = set of matrices of rank i .

When m 6= n, the category modG (DX ) is semi-simple, so each
H j

Ot
(Dp) is a direct sum of D0, . . . ,Dn (formula in [L., Raicu ’18]).

In the square case m = n, the indecomposables of main interest:

Qp :=
Sdet

〈detp+1−n〉
∈ modG (DX ) corresponds in rep(ÂAn) to

C
1 // C
0
oo

1 // · · ·
0

oo
1 // C
0
oo

0 // 0
0
oo

0 // · · ·
0

oo
0 // 0
0
oo (p 1’s)

Let add(Q) denote the subcategory of modG (DX ) formed of
D-modules that are direct sums of Q0,Q1, . . .Qn−1.
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Direct sum decomposition in square case

q-binomial:

(
a

b

)
q

=
(1− qa) · (1− qa−1) · · · (1− qa−b+1)

(1− qb) · (1− qb−1) · · · (1− q)

Theorem (L., Raicu ‘18)

We have that H j

Ot
(Dp) ∈ add(Q) (with t < p). Explicitly:∑

j≥0

[H j

Ot
(Dp)] · qj =

t∑
s=0

[Qs ] · q(p−t)2 ·ms(q2),

where mt(q) =

(
n − t

p − t

)
q

, and for s = 0, · · · , t − 1

ms(q) =

(
n − s

p − s

)
q

·
(
p − 1− s

t − s

)
q

−
(
n − s − 1

p − s − 1

)
q

·
(
p − 2− s

t − 1− s

)
q
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We also show that H j

Ot
(Qp) ∈ add(Q) and give an explicit formula.

Hence, we can calculate all iterations H i1
Ot1

(H i2
Ot2

(· · ·H ir
Otr

(Dp) · · · ))

In particular, we determine the Lyubeznik numbers λi ,j(Op) of
determinantal varieties, given by

H i
{0}H

mn−j
Op

(S) = E⊕λi,j (Op)

This answers a question of M. Hochster.

The Lyubeznik numbers are truly invariants of the (projective)
determinantal varieties themselves, i.e. they do not depend on the
choice of embedding into the projective space.
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Lyubeznik numbers in the square case

Theorem (L., Raicu ’18)

We have
∑
λi ,j(On−1) · qi · w j = (q · w)n

2−1 and for
0 ≤ p ≤ n − 2 we have∑

i ,j≥0

λi ,j(Op) · qi · w j =

=

p∑
s=0

qs
2+2s ·

(
n − 1

s

)
q2

· wp2+2p+s·(2n−2p−2) ·
(
n − 2− s

p − s

)
w2

Similar methods were applied to describe local cohomology and
Lyubeznik numbers for other spaces of interest.
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