Quantum affine algebras and Grassmannians

Jian-Rong Li
University of Graz
joint work with Wen Chang, Bing Duan, and Chris Fraser
August 12–16, 2019
ETH. Zurich. Switzerland

Table of contents

- 1 Parametrization of simple finite dimensional $U_q(\widehat{\mathfrak{sl}_n})$ -modules using semi-standard Young tableaux
- 2 q-character formulas
- Real modules

Representations of quantum affine algebras

Denote $g = \mathfrak{sl}_n$, $I = [n-1] = \{1, ..., n-1\}$.

 $U_q(\widehat{\mathfrak{g}})$ is the quantum affine algebra associated to \mathfrak{g} .

 $\mathcal{P}=$ the free abelian group generated by $Y_{i,s}^{\pm 1}$, $i\in I$, $s\in \mathbb{Z}.$

 $\mathcal{P}^+=$ the submonoid of \mathcal{P} generated by $Y_{i,s}$, $i\in I$, $s\in\mathbb{Z}$.

Elements in \mathcal{P}^+ are called dominant monomials.

 $\mathcal{P}_{\ell}^+=$ the submonoid of \mathcal{P}^+ generated by $Y_{i,i-2k-2},\ i\in I$, $k\in[0,\ell].$

Representations of quantum affine algebras

Hernandez and Leclerc in 2010 introduced a category $\mathcal{C}_{\ell}^{\mathfrak{g}}$ which is a subcategory of the category of finite-dimensional $U_q(\widehat{\mathfrak{g}})$ -modules.

Simple finite dimensional $U_q(\widehat{\mathfrak{g}})$ -modules in $\mathcal{C}_\ell^{\mathfrak{g}}$ are in one to one correspondence with elements in \mathcal{P}_ℓ^+ (Chari-Pressley 1994).

Denote by L(M) the simple finite-dimensional $U_q(\widehat{\mathfrak{g}})$ -module corresponding to $M \in \mathcal{P}^+$.

Cluster algebra structure on the Grothendieck ring of certain subcategory of the category of finite dimensional $U_q(\widehat{\mathfrak{g}})$ -modules

Denote $X_{i,k}^{(s)} = Y_{i,s}Y_{i,s+2}\cdots Y_{i,s+2k-2}$. $L(X_{i,k}^{(s)})$ are called Kirillov-Reshetikhin modules. $L(X_{i,1}^{(s)})$ are called fundamental modules.

Denote $\mathcal{R}_{\ell}^{\mathfrak{g}}=$ Grothendieck ring of $\mathcal{C}_{\ell}^{\mathfrak{g}}.$

Theorem (Hernandez-Leclerc 2010)

The ring $\mathcal{R}^{\mathfrak{g}}_{\ell}$ has a cluster algebra structure. The cluster variables in the initial seed of the cluster algebra are certain Kirillov-Reshetikhin modules.

The initial cluster for $\mathcal{R}_4^{A_4}$

This is the initial cluster in the case of $U_q(\widehat{\mathfrak{sl}}_5)$, $\ell=4$.

Cluster algebra structure on Grassmannians

Scott in 2003 studied cluster algebra structures in coordinate rings of Grassmannians.

Theorem (Scott 2003)

The ring $\mathbb{C}[Gr(n,m)]$ has a cluster algebra structure. The cluster variables in the initial seed are certain Plücker coordinates.

Denote
$$\mathbb{C}[Gr(n, m, \sim)] = \mathbb{C}[Gr(n, m)]/(P_{i,i+1,...,i+n-1} - 1, i \in [m-n+1]).$$

The ring $\mathbb{C}[Gr(n, m, \sim)]$ has a cluster algebra structure induced from the cluster algebra structure on $\mathbb{C}[Gr(n, m)]$.

The initial cluster for $\mathbb{C}[Gr(5, 10, \sim)]$

Isomorphism of the two cluster algebras

Denote
$$P^{(a,b,c)} = P_{j_1,...,j_n}$$
, $j_1 = b$, $j_k = j_{k-1} - 1$, $k \in [2, a] \cup [a + 2, n]$, $j_{a+1} - j_a = c$.

Theorem (Hernandez-Leclerc 2010)

The assignments $L(X_{i,t+1}^{(i-2t-2)}) \mapsto P^{(n-i+1,1,t+2)}$, $i \in I$, extends to a ring isomorphism $\Phi: \mathcal{R}_{\ell}^{A_{n-1}} \to \mathbb{C}[\operatorname{Gr}(n,n+\ell+1,\sim)]$.

Under the map Φ , Kirillov-Reshetikhin modules are sent to certain Plücker coordinates. A natural question is: what are the images of the simple modules in $\mathcal{R}_{\ell}^{A_{n-1}}$. To answer the question, we use rectangular tableaux with n rows.

Monoid $\operatorname{SSYT}(n,[n+\ell+1])$ of semi-standard Young tableaux

- (1) SSYT(n, [m]) = the set consisting of 1 (empty tableau) and semi-standard Young tableaux of rectangular shape with n rows and with entries in [m].
- (2) For $A, B \in SSYT(n, [m])$, $A \cup B$ is the semi-standard tableau with n rows and the elements in the ith row are the union of elements in the ith row of A and B, $i \in [n]$.

Example

1	3		1	7		1	1	3	7
2	7	U	2	9	=	2	2	7	9
6	8		8	10		6	8	8	10

Monoid $\operatorname{SSYT}(n,[n+\ell+1])$ of semi-standard Young tableaux

- (1) We say that $A \in \operatorname{SSYT}(n,[m])$ is a trivial tableau if either A = 1 or $A = \bigcup_j T_{i_j}$, where T_{i_j} is a one column tableau with entries $i_j, i_j + 1, \ldots, i_j + n 1, \ i_j \in \mathbb{Z}_{\geq 1}$.
 - The tableau 4 is a trivial tableau.
- (2) For $A \in \mathrm{SSYT}(n,[m])$, denote by $\widetilde{A} \subset A$ the semi-standard Young tableau with minimum number of columns such that $A = \widetilde{A} \cup A'$ for some trivial tableau A'.

Monoid $\operatorname{SSYT}(n,[n+\ell+1])$ of semi-standard Young tableaux

(1) For $A, B \in \text{SSYT}(\underline{n}, [\underline{m}])$, define $A \sim B$ if either A, B are trivial tableaux or $\widetilde{A} = \widetilde{B}$.

(2) Denote $SSYT(n, [m], \sim) = SSYT(n, [m]) / \sim$.

Lemma

 $\operatorname{SSYT}(n,[m])$ and $\operatorname{SSYT}(n,[m],\sim)$ are commutative cancellative monoids under the multiplication " \cup ".

Isomorphism of monoids $\mathcal{P}^+_{\ell,A_{n-1}} o \mathrm{SSYT}(n,[n+\ell+1],\sim)$

Theorem (Chang-Duan-Fraser-L.)

The isomorphism $\Phi: \mathcal{R}_{\ell}^{A_{n-1}} \to \mathbb{C}[\operatorname{Gr}(n, n+\ell+1, \sim)]$ induces an isomorphism of monoids $\widetilde{\Phi}: \mathcal{P}_{\ell, A_{n-1}}^+ \to \operatorname{SSYT}(n, [n+\ell+1], \sim)$.

$$\widetilde{\Phi}(Y_{1,-1}Y_{2,-4}Y_{1,-7}Y_{2,-6}Y_{1,-9}) = \begin{bmatrix} 1 & 3 & 4 \\ 2 & 5 & 6 \\ 4 & 7 & 8 \end{bmatrix}$$

$$\widetilde{\Phi}(Y_{1,-1}Y_{1,-3}Y_{1,-5}Y_{2,-4}Y_{1,-7}^2Y_{2,-6}Y_{1,-9}^2) = \begin{bmatrix} 1 & 3 & 4 \\ 2 & 5 & 6 \\ \hline 7 & 8 & 8 \end{bmatrix}$$

Fundamental modules correspond to certain Plücker coordinates

- (1) For a Plücker coordinate P, denote by T_P the one-column tableau with entries from the indices of P.
- (2) By T-systems, fundamental modules $L(Y_{i,s})$ corresponds to $T_{P_{(i,s)}}$, $P_{(i,s)} = P^{(n-i,\frac{i-s}{2},2)}$.

Fundamental modules correspond to certain Plücker coordinates

$$[Y_{1,-1}][Y_{1,-3}] = [Y_{1,-3}Y_{1,-1}] + [Y_{2,-2}],$$

$$P_{124}P_{235} = P_{125}P_{234} + P_{123}P_{245}.$$

Note that we set $P_{123} = 1$, $P_{234} = 1$.

$$\widetilde{\Phi}(Y_{1,-1}) = \begin{bmatrix} 1 \\ 2 \\ 4 \end{bmatrix}, \widetilde{\Phi}(Y_{1,-3}) = \begin{bmatrix} 2 \\ 3 \\ 5 \end{bmatrix}, \widetilde{\Phi}(Y_{1,-3}Y_{1,-1}) = \begin{bmatrix} 1 \\ 2 \\ 5 \end{bmatrix}, \widetilde{\Phi}(Y_{2,-2}) = \begin{bmatrix} 2 \\ 4 \\ 5 \end{bmatrix}$$

From dominant monomials to tableaux

Denote
$$T_M = \widetilde{\Phi}(M)$$
 and $M_T = \widetilde{\Phi}^{-1}(T)$.
Let $M = Y_{2,0}Y_{1,-3}Y_{2,-2}Y_{1,-5}$. Then

$$T_{M} = \widetilde{\Phi}(Y_{2,0}) \cup \widetilde{\Phi}(Y_{1,-3}) \cup \widetilde{\Phi}(Y_{2,-2}) \cup \widetilde{\Phi}(Y_{1,-5})$$

$$= \begin{bmatrix} 1 \\ 3 \\ 4 \end{bmatrix} \cup \begin{bmatrix} 2 \\ 3 \\ 5 \end{bmatrix} \cup \begin{bmatrix} 2 \\ 4 \\ 5 \end{bmatrix} \cup \begin{bmatrix} 3 \\ 4 \\ 5 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} \cup \begin{bmatrix} 2 \\ 3 \end{bmatrix} \cup \begin{bmatrix} 4 \\ 5 \end{bmatrix} \cup \begin{bmatrix} 4$$

From tableaux to dominant monomials

Let

$$T = \begin{bmatrix} 1 \\ 3 \\ 6 \end{bmatrix} = \begin{bmatrix} 1 \\ 3 \\ 4 \end{bmatrix} \cup \begin{bmatrix} 2 \\ 3 \\ 5 \end{bmatrix} \cup \begin{bmatrix} 3 \\ 4 \\ 6 \end{bmatrix}.$$

The unique multi-set of Plücker coordinates $P^{(a_i,b_i,2)}$, $i\in[k]$, $k\in\mathbb{Z}_{\geq 1}$ such that $T=\cup_{i=1}^k T_{P^{(a_i,b_i,2)}}$ is

$$\{P_{1,3,4}, P_{2,3,5}, P_{3,4,6}\} = \{P^{(1,1,2)}, P^{(2,2,2)}, P^{(2,3,2)}\}$$

= \{P_{(2,0)}, P_{(1,-3)}, P_{(1,-5)}\}.

Cluster monomials in a Grassmannian cluster algebra

Recall that $T_M = \widetilde{\Phi}(M)$ and $M_T = \widetilde{\Phi}^{-1}(T)$.

Definition

For a semi-standard tableau $T \in \mathrm{SSYT}(n, [n+\ell+1], \sim)$, $n \in \mathbb{Z}_{\geq 2}$, $\ell \in \mathbb{Z}_{\geq 1}$, we define $\mathrm{ch}(T) \in \mathbb{C}[\mathrm{Gr}(n, n+\ell+1, \sim)]$ by $\mathrm{ch}(T) = \Phi(L(M_T))$.

Corollary

The isomorphism $\Phi: \mathcal{R}_{\ell}^{A_{n-1}} \to \mathbb{C}[\operatorname{Gr}(n, n+\ell+1, \sim)]$ sends a module L(M) to $\operatorname{ch}(T_M)$ and $\Phi^{-1}(\operatorname{ch}(T)) = L(M_T)$.

Cluster monomials in a Grassmannian cluster algebra

- (1) A simple finite-dimensional $U_q(\widehat{\mathfrak{g}})$ -module is called prime if it is not isomorphic to a tensor product of two non-trivial modules.
- (2) A simple finite-dimensional $U_q(\widehat{\mathfrak{g}})$ -module M is called real if $M \otimes M$ is simple.

Theorem (Qin 2017, Kashiwara-Kim-Oh-Park 2019)

Every cluster monomial (resp. cluster variable) in $\mathcal{R}_{\ell}^{\mathfrak{g}}$ corresponds to the isomorphism class of a real (resp. real prime) simple object in $\mathcal{C}_{\ell}^{\mathfrak{g}}$.

Cluster monomials in a Grassmannian cluster algebra

We call T prime (resp. real) if $L(M_T)$ is prime (resp. real).

Theorem

Every cluster monomial (resp. cluster variable) in $\mathbb{C}[Gr(n, m, \sim)]$, n < m, is of the form ch(T) for some real tableau (resp. prime real tableau) $T \in SSYT(n, [m], \sim)$.

A natural question is: how to compute ch(T). To answer the question, we use Arakawa-Suzuki's formula.

Arakawa-Suzuki's formula

F is a non-archimedean local field with a normalized absolute value $|\cdot|$.

For any reductive group G over F, let $\mathcal{C}(G)$ be the category of complex, smooth representations of G(F) of finite length and let IrrG be the set of irreducible objects of $\mathcal{C}(G)$ up to equivalence.

$$G_n = GL_n$$
.

For $\pi_i \in \mathcal{C}(G_{n_i})$, i=1,2, $\pi_1 \times \pi_2 \in \mathcal{C}(G_{n_1+n_2})$ is the representation which is parabolically induced from $\pi_1 \otimes \pi_2$.

 Irr_c is the set of supercuspidal representations of G_n , n > 0.

Arakawa-Suzuki's formula

A segment is a finite non-empty subset of Irr_c of the form $\Delta = \{\rho_1, \ldots, \rho_k\}$, where $\rho_{i+1} = \rho_i \nu$, $i \in [k-1]$, where ν is the character $\nu(g) = |\det(g)|$.

We fix $\rho \in \operatorname{Irr}_c$ and write a segment $\{\rho \nu^i : i \in [a, b]\}$ as [a, b], $a, b \in \mathbb{Z}$, $a \leq b$.

A multi-segment is a formal finite sum $\mathbf{m} = \sum_{i=1}^{k} \Delta_i$ of segments.

For $\Delta = \{\rho_1, \dots, \rho_k\}$, $Z(\Delta) = \operatorname{soc}(\rho_1 \times \dots \times \rho_k)$, where $\operatorname{soc}(\pi)$ denotes the socle of π (the largest semisimple subrepresentation of π).

For a multi-segment
$$\mathbf{m} = \sum_{i=1}^k \Delta_i$$
, $\zeta(\mathbf{m}) = \mathrm{Z}(\Delta_1) \times \cdots \times \mathrm{Z}(\Delta_k)$, $\mathrm{Z}(\mathbf{m}) = \mathrm{soc}(\zeta(\mathbf{m}))$.

Arakawa-Suzuki's formula

For $\lambda = (\lambda_1, \dots, \lambda_k) \in \mathbb{Z}^k$, denote by S_{λ} the subgroup of S_k consisting of elements σ such that $\lambda_{\sigma(i)} = \lambda_i$.

For
$$\mu = (\mu_1, \dots, \mu_k)$$
, $\lambda = (\lambda_1, \dots, \lambda_k) \in \mathbb{Z}^k$, let $\mathbf{m}_{\mu,\lambda} = \sum_{i=1}^k [\mu_i, \lambda_i]$.

Theorem (Arakawa-Suzuki 1998, see also Lapid-Minguez 2018)

For $w \in S_n$ which is of maximal length in $S_{\lambda}wS_{\mu}$,

$$[\mathbf{Z}(\mathbf{m}_{w\mu,\lambda})] = \sum_{w' \in S_k} (-1)^{\ell(w'w)} p_{w'w_0,ww_0}(1) [\zeta(\mathbf{m}_{w'\mu,\lambda})],$$

where $p_{y,y'}(q)$ $(y, y' \in S_k)$ is the Kazhdan-Lusztig polynomial.

Equivalence of categories

Let H_N $(N \in \mathbb{Z}_{\geq 1})$ be the Iwahori-Hecke algebra of $GL_N(F)$.

- (1) The category of finite-dimensional representations of H_N is equivalent to the category of smooth finite-length representations of $GL_N(F)$ which are generated by the vectors which are fixed under the Iwahori subgroup.
- (2) Chari and Pressley in 1996 proved that when $N \leq n$, there is an equivalence between the category of finite dimensional representations of H_N and the subcategory of finite dimensional representations of $U_q(\widehat{\mathfrak{sl}_n})$ consisting of those representations whose irreducible components under $U_q(\widehat{\mathfrak{sl}_n})$ all occur in the N-fold tensor product of the natural representation of $U_q(\widehat{\mathfrak{sl}_n})$.

Monoid of multi-segments and monomial of dominant monomials

Consider all groups $GL_n(F)$, $n \ge 0$ at once and denote by Irr the set of equivalence classes of irreducible representations of $GL_n(F)$, $n \ge 0$.

By the Zelevinsky classification, Irr is in one-to-one correspondence with the monoid of multisegments.

There is an isomorphism of monoids (Chari-Pressley 1996):

monoid of multi-segments
$$o \mathcal{P}^+$$
 $[a,b] \mapsto Y_{b-a+1,a+b-1}$

Denote by $M_{\mathbf{m}}$ the dominant monomial corresponding to \mathbf{m} and \mathbf{m}_{M} the multi-segment corresponding to M.

Dominant monomials and multi-segments

Let

$$M = Y_{2,0} Y_{1,-3} Y_{2,-2} Y_{1,-5} Y_{2,-6} Y_{2,-8}.$$

Then

$$\mathbf{m}_M = [0,1] + [-1,0] + [-1,-1] + [-2,-2] + [-3,-2] + [-4,-3].$$

Segments, fundamental modules, certain one-column tableaux

For a segment [a, b], we denote

$$M_{[a,b]} = egin{cases} Y_{b-a+1,a+b-1}, & a < b+1, \ 1, & a = b+1, \ 0, & a > b+1. \end{cases}$$

We use the convention that $\operatorname{ch}(0)=0$ and $\operatorname{ch}(1)=1$. For a pair of k-tuples $(\mu,\lambda)\in\mathbb{Z}^k\times\mathbb{Z}^k$, we define multi-sets

$$\operatorname{Fund}_{M}(\mu,\lambda) = \{M_{[\mu_{i},\lambda_{i}]} : i \in [k]\}.$$

Relation between a segment and a one-column tableau:

$$[a,b] \mapsto T_{[1-a,1-a+n]\setminus \{n-b\}}.$$

For $M \in \mathcal{P}_{\ell}^+$, there is a unique $k = k_M \in \mathbb{Z}_{\geq 1}$, a unique $w_M \subset S_k$, and a unique pair $(\mu, \lambda) = (\mu_M, \lambda_M) \in \mathbb{Z}^k \times \mathbb{Z}^k$, $\mu_1 \geq \cdots \geq \mu_k$, $\lambda_1 \geq \cdots \geq \lambda_k$, such that the multi-segment \mathbf{m}_M is $\mathbf{m}_{w_M \mu, \lambda}$ and w_M is of maximal length in $S_{\lambda_M} w_M S_{\mu_M}$.

q-character formula

Translating Arakawa-Suzuki's formula to the language of q-characters, we have For a simple $U_q(\widehat{\mathfrak{sl}}_n)$ -module L(M),

$$\chi_q(L(M)) = \sum_{w' \in S_k} (-1)^{\ell(w'w_M)} p_{w'w_0, w_M w_0}(1) \prod_{M' \in \text{Fund}_M(w'\mu_M, \lambda_M)} \chi_q(L(M'))$$

where $k = k_M$, w_0 is the longest word in S_k , $p_{u,v}(t)$ is the Kazhdan-Lusztig polynomial.

A formula for ch(T)

Suppose that T' has columns T'_1, \ldots, T'_k . Each column T'_i has content of the form $[a_i, a_i + n] \setminus \{c_i\}$, with $c_i \in [a_i, a_i + n]$ (we say that T' has small gaps).

For a permutation $w \in S_k$, we define $w \cdot T'$ in two cases. First, suppose that $c_i \in [a_{w(i)}, a_{w(i)} + n]$ for all i, then we define $w \cdot T'$ be the column-increasing tableaux whose ith column is $[a_{w(i)}, a_{w(i)} + n] \setminus \{c_i\}$.

Second, if $c_i \notin [a_{w(i)}, a_{w(i)} + n]$ for some i, then we say that $w \cdot T'$ is undefined, and we define $P_{w \cdot T'} := 0 \in \mathbb{C}[Gr(n, m)]$.

A formula for ch(T)

Theorem

Let T be any tableaux and T' the tableau in its equivalence class with small gaps. Then

$$\mathsf{ch}(T) = \sum_{w' \in S_k} (-1)^{\ell(w'w)} p_{w'w_0, ww_0}(1) P_{w' \cdot T'} \in \mathbb{C}[\mathsf{Gr}(n, m, \sim)]$$

with $w_0 \in S_k$ the longest element and $w = w_{M_T}$.

Let
$$M = Y_{1,-5}Y_{1,-3}Y_{2,-2}Y_{2,0}$$
. Then
$$\chi_q(L(M)) = \chi_q(Y_{2,-2})\chi_q(Y_{4,-2}) - \chi_q(Y_{3,-1})\chi_q(Y_{3,-3}) \\ + \chi_q(Y_{1,-1})\chi_q(Y_{3,-1})\chi_q(Y_{2,-4}) \\ - \chi_q(Y_{2,0})\chi_q(Y_{2,-2})\chi_q(Y_{2,-4}) \\ - \chi_q(Y_{1,-1})\chi_q(Y_{1,-3})\chi_q(Y_{3,-1})\chi_q(Y_{1,-5}) \\ + \chi_q(Y_{2,0})\chi_q(Y_{1,-3})\chi_q(Y_{2,-2})\chi_q(Y_{1,-5}).$$

In the above q-character formula, $Y_{i,s}$ are identified with 1 for i = n and identified with 0 for $i \ge n + 1$. In the case of $\mathfrak{g} = \mathfrak{sl}_3$, we have

$$\chi_{q}(L(M)) = -1 + \chi_{q}(Y_{1,-1})\chi_{q}(Y_{2,-4}) - \chi_{q}(Y_{2,0})\chi_{q}(Y_{2,-2})\chi_{q}(Y_{2,-4}) - \chi_{q}(Y_{1,-1})\chi_{q}(Y_{1,-3})\chi_{q}(Y_{1,-5}) + \chi_{q}(Y_{2,0})\chi_{q}(Y_{1,-3})\chi_{q}(Y_{2,-2})\chi_{q}(Y_{1,-5}).$$

In the language of Grassmannian, this formula is

Using Plücker relations, we can write this formula in terms of semi-standard Young tableaux.

Using Plücker relations and $P_{123}=P_{234}=P_{345}=P_{456}=1$, we have

$$\begin{split} P_{135}P_{246} - P_{125}P_{346} - P_{134}P_{256} + P_{124}P_{356} - 2P_{123}P_{456} \\ &= (P_{235}P_{134} - P_{123}P_{345})(P_{346}P_{245} - P_{234}P_{456}) \\ &- (P_{124}P_{235} - P_{123}P_{245})P_{346} \\ &- P_{134}(P_{245}P_{356} - P_{235}P_{456}) + P_{124}P_{356} - 2 \\ &= (P_{235}P_{134} - 1)(P_{346}P_{245} - 1) - (P_{124}P_{235} - P_{245})P_{346} \\ &- P_{134}(P_{245}P_{356} - P_{235}) + P_{124}P_{356} - 2 \\ &= -1 + P_{124}P_{356} - P_{134}P_{245}P_{356} - P_{124}P_{235}P_{346} + P_{134}P_{235}P_{245}P_{346} \\ &= \mathsf{ch}(\boxed{ \begin{array}{c} 1 & 2 \\ \hline 3 & 4 \\ \hline 5 & 6 \\ \end{array}). \end{split}$$

$$ch(\begin{array}{c|c} 1 & 2 \\ \hline 3 & 4 \\ \hline 5 & 6 \\ \end{array}) = P_{135}P_{246} - P_{125}P_{346} - P_{134}P_{256} + P_{124}P_{356} - 2P_{123}P_{456}$$

$$= P \begin{array}{c|c} 1 & 2 \\ \hline 3 & 4 \\ \hline 5 & 6 \\ \end{array} - P \begin{array}{c|c} 1 & 3 \\ \hline 2 & 4 \\ \hline 5 & 6 \\ \end{array} - P \begin{array}{c|c} 1 & 2 \\ \hline 3 & 5 \\ \hline 4 & 6 \\ \end{array} + P \begin{array}{c|c} 1 & 3 \\ \hline 2 & 5 \\ \hline 3 & 6 \\ \end{array}$$

Recall that for a semi-standard Young tableaux T, we denote $P_T = P_{T_1} \cdots P_{T_m}$, where T_i 's are columns of T, P_{T_i} is the Plücker coordinate with entries from a one-column tableau T_i .

Real modules and non-real modules

We call a semi-standard Young tableau T real if the corresponding module $L(M_T)$ is real.

T is real if and only if $ch(T)ch(T) = ch(T \cup T)$.

Let
$$T = \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix}$$
. Then $ch(T)$ is a cluster variable and T is real.

The following are smallest prime non-real tableaux for Gr(3,9) and Gr(4,8).

1	3	4
2	6	7
5	8	9

1	2	5	
3	4	8	,
6	7	9	

1	2	3
4	5	6
5	8	9

1	3
2	5
4	7
6	8

1	2
3	4
5	6
7	8

Parametrization of simple finite dimensional $U_q(\widehat{\mathfrak{sl}_n})$ -modules usi q-character formulas Real modules

Thanks for your attention.

Happy birthday to Prof. Vitaly Tarasov and Prof. Alexander
Varchenko!