Bethe subalgebras in Yangians

Aleksei Ilin

National Research University Higher School of Economics Faculty of Mathematics Moscow, Russia

> Zurich, 2019

Definition

The Yangian $Y(\mathfrak{g})$ is a unital associative algebra over \mathbb{C} generated by the elements $\{x, J(x) \mid x \in \mathfrak{g}\}$ with the following defining relations:

$$\begin{split} xy - yx &= [x, y], \qquad J([x, y]) = [J(x), y], \\ J(cx + dy) &= cJ(x) + dJ(y), \\ &[J(x), [J(y), z]] - [x, [J(y), J(z)]] = \\ &\sum_{, \mu, \nu \in \Lambda} \langle [x, x_{\lambda}], [[y, x_{\mu}], [z, x_{\nu}]] \rangle \{x_{\lambda}, x_{\mu}, x_{\nu}\}, \end{split}$$

$$\begin{split} & [[J(x), J(y)], [z, J(w)]] + [[J(z), J(w)], [x, J(y)]] = \\ & \sum_{\lambda, \mu, \nu \in \Lambda} \left(\langle [x, x_{\lambda}], [[y, x_{\mu}], [[z, w], x_{\nu}]] \rangle + \langle [z, x_{\lambda}], [[w, x_{\mu}], [[x, y], x_{\nu}]] \rangle \right) \{ x_{\lambda}, x_{\mu}, J(x_{\nu}) \} \end{split}$$

for all $x, y, z, w \in \mathfrak{g}$ and $c, d \in \mathbb{C}$, where $\langle \cdot, \cdot \rangle$ is a fixed non-degenerate invariant bilinear form on \mathfrak{g} , $\{x_{\lambda}\}_{\lambda \in \Lambda}$ is some orthonormal basis of \mathfrak{g} , $\{x_1, x_2, x_3\} = \frac{1}{24} \sum_{\pi \in \mathfrak{S}_3} x_{\pi(1)} x_{\pi(2)} x_{\pi(3)}$ for all $x_1, x_2, x_3 \in Y(\mathfrak{g})$.

Definition

The universal matrix for the Yangian $Y(\mathfrak{g})$ is an element

$$\hat{R}(u) = Id + \sum_{k \ge 1} \hat{R}^{(k)} u^{-k} \in (Y(\mathfrak{g}) \otimes Y(\mathfrak{g}))[[u^{-1}]]$$

with the following properties: 1) (Id $\otimes \Delta$) $\hat{R}(u) = \hat{R}_{12}(u)\hat{R}_{13}(u)$; 2) $\tau_{0,u}\Delta^{op}(X) = \hat{R}(u)^{-1}(\tau_{0,u}\Delta(X))\hat{R}(u)$ for all $X \in Y(\mathfrak{g})$. Here τ_u is an automorphism of $Y(\mathfrak{g})$ such that $x \mapsto x, J(x) \mapsto J(x) + ux$ for all $x \in \mathfrak{g}$ and $\tau_{0,u} = \tau_0 \otimes \tau_u$.

Proposition

The universal *R*-matrix is unique.

RTT realization

Let (ρ, V) be any non-trivial representation of $Y(\mathfrak{g})$. Let $R(u) = (\rho \otimes \rho)\hat{R}(-u)$. We fix a basis of V and regard $R(u) \in \operatorname{End}(V)^{\otimes 2}[[u^{-1}]]$ as a matrix in this basis.

Definition

The Yangian $Y_V(\mathfrak{g})$ is a unital associative algebra generated by the elements $t_{i\,i}^{(r)}, 1\leqslant i,j\leqslant \dim V; r\geqslant 1$ with the defining relations

$$\begin{aligned} R(u-v)T_1(u)T_2(v) &= T_2(v)T_1(u)R(u-v) \text{ in End } (V)^{\otimes 2} \otimes Y_V(\mathfrak{g})[[u^{-1}, v^{-1}]], \\ S^2(T(u)) &= T(u + \frac{1}{2}c_{\mathfrak{g}}), \end{aligned}$$

where $S(T(u))=T(u)^{-1}$ is the antipode map and $c_{\mathfrak{g}}$ is the value of the Casimir element of \mathfrak{g} on the adjoint representation. Here

$$T(u) = [t_{ij}(u)]_{i,j=1,\dots,\dim V} \in \operatorname{End} V \otimes Y_V(\mathfrak{g}),$$

$$t_{ij}(u) = \delta_{ij} + \sum_r t_{ij}^{(r)} u^{-r}$$

and $T_1(u)$ (resp. $T_2(u)$) is the image of T(u) in the first (resp. second) copy of End V.

Theorem (V. Drinfeld, C. Wendlandt)

The map $\psi: Y_V(\mathfrak{g}) \to Y(\mathfrak{g})$ such that

$$T(u)\mapsto (\rho\otimes 1)\hat{R}(-u).$$

is an isomorphism.

From know we consider $V = \bigoplus_{i=1}^n V(\omega_i, 0)$ sum of fundamental representations of $Y(\mathfrak{g})$. Note that the restriction of $V(\omega_i, 0)$ to \mathfrak{g} decomposes as

$$V(\omega_i, 0) = V_{\omega_i} \oplus \bigoplus_{\mu < \omega_i} V_{\mu}^{\oplus k_{\mu}}$$

Here V_{μ} is the irreducible representation of \mathfrak{g} of highest weight μ and $\mu < \omega_i$ means that $\omega_i - \mu$ is a sum of positive roots, $k_{\mu} \in \mathbb{Z}_{\geq 0}$.

Definition of Bethe subalgebras

Let $\rho_i:Y(\mathfrak{g})\to \operatorname{End} V(\omega_i,0)$ be the i-th fundamental representation of $Y(\mathfrak{g}).$ Let

 $\pi_i: V \to V(\omega_i, 0)$

be the projection. Let $T^i(u) = \pi_i T(u)\pi_i$ be the submatrix of T(u)-matrix, corresponding to *i*-th fundamental representation. Let \tilde{G} be the simply connected Lie group, corresponding to the Lie algebra g.

Definition

Let $C \in \tilde{G}$. Bethe subalgebra $B(C) \subset Y_V(\mathfrak{g})$ is the subalgebra generated by all Fourier coefficients of the following series with the coefficients in $Y_V(\mathfrak{g})$

$$\tau_i(u, C) = \operatorname{tr}_{V(\omega_i, 0)} \rho_i(C) T^i(u), \quad 1 \leq i \leq n.$$

Let G be the adjoint Lie group corresponding to the Lie algebra \mathfrak{g} . In fact, Bethe subalgebras is parameterized by G.

Let G^{reg} be the set of regular elements of G, T – maximal torus, T^{reg} – the set of regular elements of torus.

Theorem

1) For any $C \in G^{reg}$ Bethe subalgebra B(C) is a free polynomial algebra and the coefficients of $\tau_i(u, C)$ are free generators of B(C). 2) For any $C \in T^{reg}$ Bethe subalgebra B(C) is a maximal commutative subalgebra of $Y_V(\mathfrak{g})$.

Corollary

For any $C\in T^{reg}$ Bethe subalgebra B(C) in $Y(\mathfrak{g})$ is generated by the coefficients of

 $\operatorname{tr}_V \rho(C)(\rho \otimes 1)\hat{R}(u),$

where (ρ, V) are all finite-dimensional representation of $Y(\mathfrak{g})$.

Let V be a representation of \tilde{G} . This defines the map

 $G \to \mathbb{P}(\operatorname{End} V).$

If $V = V_{\lambda} \bigoplus \bigoplus_{\mu < \lambda} V_{\mu}^{\bigoplus k_{\mu}}$, $k_m u \ge 0$ and V_{λ} is irreducible of regular highest weight λ , then the closure of the image of G in $\mathbb{P}(\operatorname{End} V)$ is a smooth projective variety called De-Concini - Procesi wonderful compactification \overline{G} . We consider the closure of G in $\prod_i \mathbb{P}(\text{End}(V(\omega_i, 0)))$. In is known that it is isomorphic to \overline{G} . Suppose that $X = (X_1, \ldots, X_n) \in \overline{G} \subset \prod_i \mathbb{P}(\text{End}(V(\omega_i, 0)))$. We define the subalgebra B(X) of $Y_V(\mathfrak{g})$ using the same formulas just changing $\rho_i(C)$ to X_i :

$$\tau_i(u,C) = \operatorname{tr}_{V(\omega_i,0)} X_i T^i(u), \quad 1 \le i \le n.$$