

The solutions of $\mathfrak{gl}_{m|n}$ Bethe ansatz equation and rational pseudodifferential operators

Chenliang Huang

A joint work with E. Mukhin, B. Vicedo, and C. Young

Aug 14, 2019

<□▶ < @▶ < E▶ < E▶ = E - のへぐ

BETHE ANSATZ EQUATION	REPRODUCTION PROCEDURE	RATIONAL PSEUDODIFFERENTIAL OPERATORS	Reference
0000	00	000	

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

BETHE ANSATZ EQUATION Parity sequences Gaudin Hamiltonians Bethe ansatz equation Polynomials representing solutions of the BAE

REPRODUCTION PROCEDURE Reproduction procedure for $\mathfrak{gl}_{m|n}$

Population

RATIONAL PSEUDODIFFERENTIAL OPERATORS Invariant rational pseudodifferential operators Three isomorphic sets Conjecture

BETHE ANSATZ EQUATION	REPRODUCTION PROCEDURE	RATIONAL PSEUDODIFFERENTIAL OPERATORS	Reference
0000	00	000	

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

BETHE ANSATZ EQUATION Parity sequences Gaudin Hamiltonians Bethe ansatz equation Polynomials representing solutions of the BAE

REPRODUCTION PROCEDURE Reproduction procedure for $\mathfrak{gl}_{m|n}$ Population

RATIONAL PSEUDODIFFERENTIAL OPERATORS Invariant rational pseudodifferential operators Three isomorphic sets Conjecture

An (m|n) parity sequence $s = (s_1, \ldots, s_{m+n}), s_i \in \{\pm 1\}$, is a sequence such that 1 occurs exactly *m* times.

The Borel subalgebra of $\mathfrak{gl}_{m|n}$ with respect to s is \mathfrak{b}_s . The positive simple roots with respect to s are $\alpha_i^s = \epsilon_i^s - \epsilon_{i+1}^s$, $i = 1, \dots, m + n - 1$.

The polynomial $\mathfrak{gl}_{m|n}$ -modules are parametrized by (m|n)-hook partition. The highest weight of a polynomial $\mathfrak{gl}_{m|n}$ -module with respect to \mathfrak{b}_s can be found from the partition.

a (2|2)-hook parition

Given a sequence of $\mathfrak{gl}_{m|n}$ -modules (V_1, \ldots, V_k) , a sequence of pairwise distinct complex numbers $\mathbf{z} = (z_1, \ldots, z_k)$, the (quadratic) Gaudin Hamiltonians $\mathcal{H}_r \in \operatorname{End}(\bigotimes_{r=1}^k V_r)$, $r = 1, \ldots, k$, are given by

$$\mathcal{H}_{r} = \sum_{\substack{r'=1\\r'\neq r}}^{k} \frac{\sum_{i,j=1}^{m+n} |j| \, e_{i,j}^{(r)} e_{j,i}^{(r')}}{z_{r} - z_{r'}}.$$

Lemma

- 1. The Gaudin Hamiltonians mutually commute, $[\mathcal{H}_r, \mathcal{H}'_r] = 0$, for all r, r'.
- 2. The Gaudin Hamiltonians commute with the diagonal $\mathfrak{gl}_{m|n}$ action, $[\mathcal{H}_r, X] = 0$, for all r and all $X \in \mathfrak{gl}_{m|n}$.
- 3. If V_r , r = 1, ..., k, are polynomial modules, then for generic z_r , r = 1, ..., k, the Gaudin Hamiltonians are diagonalizable.

BETHE ANSATZ EQUATION	REPRODUCTION PROCEDURE	RATIONAL PSEUDODIFFERENTIAL OPERATORS	Reference
0000	00	000	

The Bethe ansatz equation associated to *s*, *z*, λ , and *l*, is a system of algebraic equations on variable *t*:

$$\sum_{q=1}^{l_{i-1}} \frac{(\alpha_{i-1}^{s}, \alpha_{i}^{s})}{t_{p}^{i} - t_{q}^{i-1}} + \sum_{\substack{q=1\\q \neq p}}^{l_{i}} \frac{(\alpha_{i}^{s}, \alpha_{i}^{s})}{t_{p}^{i} - t_{q}^{i}} + \sum_{q=1}^{l_{i+1}} \frac{(\alpha_{i+1}^{s}, \alpha_{i}^{s})}{t_{p}^{i} - t_{q}^{i+1}} = \sum_{r=1}^{k} \frac{(\lambda_{r}^{s}, \alpha_{i}^{s})}{t_{p}^{i} - z_{r}},$$

where $i = 1, ..., m + n - 1, p = 1, ..., l_i$, see [MVY].

For *i* such that $s_i \neq s_{i+1}$, the BAEs related to t_p^i are the same for $p = 1, ..., l_i$. Suppose *t* is the a solution of this equation of multiplicity *a*. If *t* is a solution of BAE, then we require the number of $t_p^i = t$ is at most *a*.

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

BETHE ANSATZ EQUATION	REPRODUCTION PROCEDURE	RATIONAL PSEUDODIFFERENTIAL OPERATORS	Reference
0000	00	000	

Define a sequence of polynomials $T^s = (T_1^s, \ldots, T_{m+n}^s)$ associated to *s*, *z*, and λ ,

$$T_i^s(x) = \prod_{r=1}^k (x-z_r)^{s_i(\lambda_r^s,\epsilon_i^s)}, \ i=1,\ldots,m+n.$$

Suppose *t* is a solution of BAE associated to *s*, *z*, λ , and *l*, then define a sequence of polynomials $y = (y_1, \dots, y_{m+n-1})$ by

$$y_i(x) = \prod_{p=1}^{l_i} (x - t_p^i), \ i = 1, \dots, m + n - 1.$$

We say the sequence of polynomials *y* represents *t*.

A sequence of polynomials y is generic with respect to s, z, and λ , if (1) if $s_i = s_{i+1}$, then $y_i(x)$ has only simple roots; (2) y_i and $y_{i\pm 1}$ have no common roots; (3) $y_i(x)$ and $T_i^s(x)(T_{i+1}^s(x))^{-s_is_{i+1}}$ have no common roots.

BETHE ANSATZ EQUATION	REPRODUCTION PROCEDURE	RATIONAL PSEUDODIFFERENTIAL OPERATORS	Reference
0000	00	000	

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

BETHE ANSATZ EQUATION Parity sequences Gaudin Hamiltonians Bethe ansatz equation Polynomials representing solutions of the BAE

REPRODUCTION PROCEDURE Reproduction procedure for $\mathfrak{gl}_{m|n}$ Population

RATIONAL PSEUDODIFFERENTIAL OPERATORS Invariant rational pseudodifferential operators Three isomorphic sets Conjecture

Given T^s , suppose $s_i \neq s_{i+1}$, then define a monic polynomial π_i^s which has only simple roots and $\pi_i^s(x) = 0$ if and only if $T_i^s T_{i+1}^s(x) = 0$.

Theorem

Let $y = (y_1, \ldots, y_{m+n-1})$ be a sequence of polynomials generic with respect to s, z, and λ , such that deg $y_i = l_i$, $i = 1, \ldots, m + n - 1$.

1. The sequence y represents a solution of the BAE associated to s, z, λ , and l, if and only if for each i = 1, ..., m + n - 1, there exists a polynomial \tilde{y}_i , such that

$$\begin{aligned} & \operatorname{Wr}(y_{i},\widetilde{y}_{i}) = T_{i}^{s} \left(T_{i+1}^{s}\right)^{-1} y_{i-1} y_{i+1} & \text{if} \quad s_{i} = s_{i+1}, \\ & y_{i} \, \widetilde{y}_{i} = \ln' \left(\frac{T_{i}^{s} T_{i+1}^{s} y_{i-1}}{y_{i+1}}\right) \pi_{i}^{s} y_{i-1} y_{i+1} & \text{if} \quad s_{i} \neq s_{i+1}. \end{aligned}$$

2. Let *i* be such that $\tilde{y}_i \neq 0$. If $y^{[i]} = (y_1, \ldots, \tilde{y}_i, \ldots, y_{m+n-1})$ is generic with respect to $s^{[i]} = (s_1, \ldots, s_{i+1}, s_i, \ldots, s_{m+n})$, *z*, and λ , then $y^{[i]}$ represents a solution of the BAE associated to $s^{[i]}$, *z*, λ , and $l^{[i]}$, where $l^{[i]} = (l_1, \ldots, \tilde{l}_i, \ldots, l_{m+n-1})$, $\tilde{l}_i = \deg \tilde{y}_i$.

BETHE ANSATZ EQUATION	REPRODUCTION PROCEDURE	RATIONAL PSEUDODIFFERENTIAL OPERATORS	Reference
0000	0•	000	

If $y^{[i]}$ is generic with respect to $s^{[i]}$, λ , and z, then by the above theorem, we can apply the reproduction procedure again.

The closure of the set of all pairs (\tilde{y}, \tilde{s}) obtained from the initial pair (y, s) by repeatedly applying all possible reproductions, $P_{(y,s)}$, is called the $\mathfrak{gl}_{m|n}$ population of solutions of the BAE associated to s, z, λ , and l, originated at y,

 $P_{(\boldsymbol{y},\boldsymbol{s})} \subset (\mathbb{P}(\mathbb{C}[\boldsymbol{x}]))^{m+n-1} \times S_{m|n}.$

By definition, $P_{(y,s)}$ decomposes as a disjoint union over parity sequences,

$$P_{(\boldsymbol{y},\boldsymbol{s})} = \bigsqcup_{\widetilde{\boldsymbol{s}} \in S_{m|n}} P^{\widetilde{\boldsymbol{s}}}_{(\boldsymbol{y},\boldsymbol{s})}, \qquad P^{\widetilde{\boldsymbol{s}}}_{(\boldsymbol{y},\boldsymbol{s})} = P_{(\boldsymbol{y},\boldsymbol{s})} \cap \left((\mathbb{P}(\mathbb{C}[\boldsymbol{x}]))^{m+n-1} \times \{\widetilde{\boldsymbol{s}}\} \right).$$

・ロト (四) (日) (日) (日) (日) (日)

BETHE ANSATZ EQUATION Parity sequences Gaudin Hamiltonians Bethe ansatz equation Polynomials representing solutions of the BAE

REPRODUCTION PROCEDURE Reproduction procedure for $\mathfrak{gl}_{m|n}$ Population

RATIONAL PSEUDODIFFERENTIAL OPERATORS Invariant rational pseudodifferential operators Three isomorphic sets Conjecture

The division ring of rational pseudodifferential operators $\mathbb{C}(x)(\partial)$ is the division subring of

$$\mathbb{C}(x)((\partial^{-1})) = \bigg\{ \sum_{r=-\infty}^{a} f_r \, \partial^r, \, f_r \in \mathbb{C}(x), \, a \in \mathbb{Z} \bigg\},\,$$

generated by $\mathbb{C}(x)[\partial]$, see [CDK].

Define a rational pseudodifferential operator $R^{s}(y, T^{s}) \in \mathbb{C}(x)(\partial)$,

$$R^{\boldsymbol{s}}(\boldsymbol{y},\boldsymbol{T}^{\boldsymbol{s}})=d_1^{s_1}(\boldsymbol{y},\boldsymbol{T}^{\boldsymbol{s}})\ldots d_{m+n}^{s_{m+n}}(\boldsymbol{y},\boldsymbol{T}^{\boldsymbol{s}}),$$

where $d_i(\boldsymbol{y}, \boldsymbol{T}^s) = \partial - s_i \ln' \frac{T_i^s y_{i-1}}{y_i}$.

Theorem

Let y represents a solution of BAE associated to s, z, λ , and l. Then the rational pseudodifferential operator $R^{s}(y, T^{s})$ is invariant under reproduction procedure: $R^{s}(y, T^{s}) = R^{s^{[l]}}(y^{[l]}, T^{s^{[l]}})$.

When λ is a typical sequence of polynomial $\mathfrak{gl}_{m|n}$ weights, the operator $R_p^{\mathfrak{s}_0} = D_{\bar{0}}D_{\bar{1}}^{-1}$ produces a vector superspace

 $W_P = \ker D_{\overline{0}} \bigoplus \ker D_{\overline{1}} \subset \mathbb{C}(x).$

A full flag of a vector superspace *W* is called a full superflag if it is generated by a homogeneous basis. The set of all full superflags $\mathcal{F}(W)$ decomposes

 $\mathcal{F}(W) = \bigsqcup_{s \in S_{m|n}} \mathcal{F}^{s}(W),$

where each $\mathcal{F}^{s}(W)$ is isomorphic to $\mathcal{F}(W_{\bar{0}}) \times \mathcal{F}(W_{\bar{1}})$.

Theorem

Let λ be a typical sequence of polynomial $\mathfrak{gl}_{m|n}$ weights. The variety of superflags $\mathcal{F}(W_P)$ is canonically identified with the set of complete factorizations $\mathcal{F}(R_P)$ and the population P. Moreover, for each s, we have $\mathcal{F}^s(W_P) \cong \mathcal{F}^s(R_P) \cong P^s$.

BETHE ANSATZ EQUATION 0000	REPRODUCTION PROCEDURE	RATIONAL PSEUDODIFFERENTIAL OPERATORS $\bigcirc \bigcirc \bullet$	Reference

Define

 $M = (\delta_{i,j}\partial - |i|e_{i,j}(x))_{i,j=1,\ldots,m+n}.$

The $\mathfrak{gl}_{m|n}$ Bethe algebra $\mathfrak{B} \subset U\mathfrak{gl}_{m|n}[t]$ is the subalgebra generated by $b_{a,r}$, see [MR], where $b_{a,r}$ are given by:

Ber
$$M = \text{cdet}(M_{i,j})_{i,j=1,...,m} \cdot \text{rdet}(M_{m+i,m+j}^{-1})_{i,j=1,...,n} = \sum_{r=-\infty}^{m-n} \sum_{a=-\infty}^{0} b_{a,r} x^a \partial^r.$$

Conjecture

Let **y** represent a solution of the BAE associated to **s**, **z**, λ , and **l**. Then there exists a joint eigenvector $w(\mathbf{y}, \mathbf{T}^s)$ of \mathfrak{B} in the singular space of $L(\lambda)$ with respect to \mathfrak{b}_s of weight $\lambda^{s,\infty}$. Moreover, the action of \mathfrak{B} on $w(\mathbf{y}, \mathbf{T}^s)$ is given by

Ber $M w(\boldsymbol{y}, \boldsymbol{T^s}) = R^s(\boldsymbol{y}, \boldsymbol{T^s}) w(\boldsymbol{y}, \boldsymbol{T^s}).$

BETHE ANSATZ EQUATION	REPRODUCTION PROCEDURE	RATIONAL PSEUDODIFFERENTIAL OPERATORS	Reference
0000	00	000	

BETHE ANSATZ EQUATION Parity sequences Gaudin Hamiltonians Bethe ansatz equation Polynomials representing solutions of the BAE

REPRODUCTION PROCEDURE Reproduction procedure for $\mathfrak{gl}_{m|n}$ Population

RATIONAL PSEUDODIFFERENTIAL OPERATORS Invariant rational pseudodifferential operators Three isomorphic sets Conjecture

[CDK] S. Carpentier, A. De Sole and V.G. Kac, *Some algebraic properties of differential operators*, J. Math. Phys. **53** (2012), no. 6, 063501, 12 pp

[HMVY] C. Huang, E. Mukhin, B. Vicedo, and C. Young, *The solution of* $\mathfrak{gl}_{M|N}$ *Bethe Ansatz equation and rational pseudodifferential operators*, arXiv:1809.01279, 28 pp

[MR] A. I.Molev and E. Ragoucy, *The MacMahon Master Theorem for right quantum superalgebras and higher Sugawara operators for* $\widehat{\mathfrak{gl}}(m|n)$, Moscow Mathematical Journal, **14** (2014), no. 1, 83-119.

[MTV] E. Mukhin, V. Tarasov, and A. Varchenko, *Bethe eigenvectors of higher transfer matrices*, J. Stat. Mech. Theory Exp. (2006), no. 8, P08002, 44 pp

[MTV1] E. Mukhin, V. Tarasov, and A. Varchenko, *Bethe eigenvectors of higher transfer matrices*, J. Stat. Mech. Theory Exp. (2006), no. 8, P08002, 44 pp

[MV] E. Mukhin and A. Varchenko, *Critical points of master functions and flag varieties*, Commun. Contemp. Math. **6** (2004), no. 1, 111–163.

[MVY] E. Mukhin, B. Vicedo, and C. Young, Gaudin model for gl(*m*|*n*), J. Math. Phys. **56** (2015), no. 5, 051704, 30 pp.

RATIONAL PSEUDODIFFERENTIAL OPERATOR

Sac

Thank You!

Vitaly Tarasov and Alexander Varchenko published their first joint work in 1994. Since then they have 52 publications.