A Verlinde formula for twisted conformal blocks

Tanmay Deshpande

(joint work with S. Mukhopadhyay)

Tata Institute of Fundamental Research Mumbai, India

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Twisted affine Lie algebras

Let g be a simple Lie algebra over C and Γ a finite group acting on g. For γ ∈ Γ, let |γ| denote its order and consider the root of unity ε = e^{2πi}/_{|γ|}. Let the element γ act on C((t)) by t → ε⁻¹t.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Twisted affine Lie algebras

- Let g be a simple Lie algebra over C and Γ a finite group acting on g. For γ ∈ Γ, let |γ| denote its order and consider the root of unity ε = e^{2πi}/_{|γ|}. Let the element γ act on C((t)) by t → ε⁻¹t.
- The twisted affine Lie algebra is defined as

$$\widehat{L}(\mathfrak{g},\gamma):=(\mathfrak{g}\otimes\mathbb{C}((t)))^{\gamma}\oplus\mathbb{C}c$$

with $c \in \widehat{L}(\mathfrak{g}, \gamma)$ central and Lie bracket given by

$$[X \otimes f, Y \otimes g] := [X, Y] \otimes fg + (X, Y)_{\mathfrak{g}} \cdot \operatorname{Res}_{t=0}(g \cdot df) \cdot c,$$

where $(\cdot, \cdot)_{\mathfrak{g}}$ is the normalized Killing form such that $(\theta^{\vee}, \theta^{\vee}) = 2$ for any long root θ of \mathfrak{g} .

- ロ ト - 4 目 ト - 4 目 ト - 1 - 9 へ ()

Twisted affine Lie algebras

► Let
$$\widehat{L}(\mathfrak{g},\gamma)^{\geq 0} \subseteq \widehat{L}(\mathfrak{g},\gamma)$$
 be the Lie subalgebra $\widehat{L}(\mathfrak{g},\gamma)^{\geq 0} := (\mathfrak{g} \otimes \mathbb{C}[[t]])^{\gamma} \oplus \mathbb{C}c.$

We have a decomposition

$$\widehat{\mathcal{L}}(\mathfrak{g},\gamma)^{\geq 0}=\widehat{\mathcal{L}}(\mathfrak{g},\gamma)^+\oplus\mathfrak{g}^\gamma\oplus\mathbb{C}c.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Let us fix a positive integer ℓ called level. Let C^ℓ(g, γ) be the category of level ℓ integrable representations of L(g, γ), where level ℓ means that the central element c acts by the integer ℓ in the representation.

- Let us fix a positive integer ℓ called level. Let C^ℓ(g, γ) be the category of level ℓ integrable representations of L(g, γ), where level ℓ means that the central element c acts by the integer ℓ in the representation.
- For each γ ∈ Γ, C^ℓ(g, γ) is a finite semisimple abelian category with simple objects {H_λ}_{λ∈P^ℓ(g,γ)} parametrized by a certain finite subset P^ℓ(g, γ) ⊆ P₊(g^γ).

- Let us fix a positive integer ℓ called level. Let C^ℓ(g, γ) be the category of level ℓ integrable representations of L(g, γ), where level ℓ means that the central element c acts by the integer ℓ in the representation.
- For each γ ∈ Γ, C^ℓ(g, γ) is a finite semisimple abelian category with simple objects {H_λ}_{λ∈P^ℓ(g,γ)} parametrized by a certain finite subset P^ℓ(g, γ) ⊆ P₊(g^γ).
- For λ ∈ P^ℓ(g, γ) ⊆ P₊(g^γ), let V_λ be the finite dimensional irreducible g^γ-rep of highest weight λ. We can define an action of L̂(g, γ)^{≥0} = L̂(g, γ)⁺ ⊕ g^γ ⊕ Cc on V_λ, where we let c act by ℓ and L̂(g, γ)⁺ acts trivially.

- Let us fix a positive integer ℓ called level. Let C^ℓ(g, γ) be the category of level ℓ integrable representations of L(g, γ), where level ℓ means that the central element c acts by the integer ℓ in the representation.
- For each γ ∈ Γ, C^ℓ(g, γ) is a finite semisimple abelian category with simple objects {H_λ}_{λ∈P^ℓ(g,γ)} parametrized by a certain finite subset P^ℓ(g, γ) ⊆ P₊(g^γ).
- For λ ∈ P^ℓ(g, γ) ⊆ P₊(g^γ), let V_λ be the finite dimensional irreducible g^γ-rep of highest weight λ. We can define an action of L
 (g, γ)^{≥0} = L
 (g, γ)⁺ ⊕ g^γ ⊕ Cc on V_λ, where we let c act by ℓ and L
 (g, γ)⁺ acts trivially.
- Consider the induced module Ind^{L̂(g,γ)}_{L̂(g,γ)≥0} V_λ. It has a unique maximal submodule, and the quotient is H_λ.

For
$$\vec{\gamma} = (\gamma_1, \cdots, \gamma_n) \in \Gamma^n$$
 define the Lie algebra
$$\widehat{L}_n(\mathfrak{g}, \vec{\gamma}) := \oplus_i \widehat{L}(\mathfrak{g}, \gamma_i)/\mathfrak{z},$$
where $\mathfrak{z} = \{(a_1, \cdots, a_n) \subseteq \mathbb{C}c^{\oplus n} | \Sigma a_i = 0\}.$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

► For
$$\vec{\gamma} = (\gamma_1, \cdots, \gamma_n) \in \Gamma^n$$
 define the Lie algebra
 $\widehat{L}_n(\mathfrak{g}, \vec{\gamma}) := \bigoplus_i \widehat{L}(\mathfrak{g}, \gamma_i)/\mathfrak{z},$
where $\mathfrak{z} = \{(a_1, \cdots, a_n) \subseteq \mathbb{C}c^{\oplus n} | \Sigma a_i = 0\}.$

▶ If for $1 \le i \le n$, $\mathcal{H}_i \in C^{\ell}(\mathfrak{g}, \gamma_i)$ then the tensor product $\mathcal{H}_1 \otimes \cdots \otimes \mathcal{H}_n$ has a natural action of $\widehat{\mathcal{L}}_n(\mathfrak{g}, \vec{\gamma})$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Let C̃ → C be an admissible Γ-cover of (possibly nodal) complex projective curves with smooth marked points p̃ = (p₁, · · · , p_n) on C along with choice of lifts p̃ on C̃ such that outside p̃ and the nodes of C, the cover is a Γ-torsor.

 Let C̃ → C be an admissible Γ-cover of (possibly nodal) complex projective curves with smooth marked points *p* = (p₁, · · · , p_n) on C along with choice of lifts *p* ⊂ on C̃ such that outside *p* and the nodes of C, the cover is a Γ-torsor.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

In particular, we have an action of Γ on C̃ such that the stabilizer of any point is a cyclic group.

- Let C̃ → C be an admissible Γ-cover of (possibly nodal) complex projective curves with smooth marked points *p* = (p₁, ..., p_n) on C along with choice of lifts *p* on C̃ such that outside *p* and the nodes of C, the cover is a Γ-torsor.
- In particular, we have an action of Γ on C̃ such that the stabilizer of any point is a cyclic group.
- The choice of the lifts p̃_i of p_i and the orientation of complex curves determines a generator γ_i of the stabilizer of the point p̃_i ∈ C̃. Hence a Γ-cover as above determines γ̃ ∈ Γⁿ associated with the marked points.

- Let C̃ → C be an admissible Γ-cover of (possibly nodal) complex projective curves with smooth marked points *p* = (p₁, · · · , p_n) on C along with choice of lifts *p* on C̃ such that outside *p* and the nodes of C, the cover is a Γ-torsor.
- ► In particular, we have an action of Γ on C̃ such that the stabilizer of any point is a cyclic group.
- The choice of the lifts p̃_i of p_i and the orientation of complex curves determines a generator γ_i of the stabilizer of the point p̃_i ∈ C̃. Hence a Γ-cover as above determines γ̃ ∈ Γⁿ associated with the marked points.
- Let us also choose formal local parameters \tilde{t}_i at \tilde{p}_i such that $\tilde{t}_i^{|\gamma_i|}$ is a formal local parameter at p_i . This choice gives us an identification $\mathcal{K}_{\tilde{p}_i} \cong \mathbb{C}((t))$ which respects the γ_i action on both sides.

• Let $(\tilde{C} \to C, \vec{\tilde{p}}, \vec{\tilde{t}})$ be an admissible Γ -cover as before. This determines $\vec{\gamma}$ and a Lie algebra homomorphism

$$\mathfrak{g}(\tilde{C} \setminus \Gamma \cdot \tilde{p})^{\Gamma} \to \widehat{L}_n(\mathfrak{g}, \vec{\gamma}).$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

• Let $(\tilde{C} \to C, \vec{\tilde{p}}, \vec{\tilde{t}})$ be an admissible Γ -cover as before. This determines $\vec{\gamma}$ and a Lie algebra homomorphism

$$\mathfrak{g}(\tilde{C} \setminus \Gamma \cdot \tilde{\vec{p}})^{\Gamma} \to \widehat{L}_n(\mathfrak{g}, \vec{\gamma}).$$

Hence given objects H
[¯] = (H₁, · · · , H_n) such that each H_i ∈ C^ℓ(𝔅, γ_i), we obtain an action of 𝔅(C̃ \ Γ · p̃)^Γ on H₁ ⊗ · · · ⊗ H_n and we consider the vector space of coinvariants:

$$\mathcal{V}_{ec{\mathcal{H}}, \Gamma}(ilde{\mathcal{C}} o \mathcal{C}, ec{ extsf{p}}, ec{ extsf{t}}) := \left[\mathcal{H}_1 \otimes \cdots \otimes \mathcal{H}_n
ight]_{\mathfrak{g}(ilde{\mathcal{C}} \setminus \Gamma \cdot ec{ extsf{p}})^{\Gamma}}.$$

• Let $(\tilde{C} \to C, \vec{\tilde{p}}, \vec{\tilde{t}})$ be an admissible Γ -cover as before. This determines $\vec{\gamma}$ and a Lie algebra homomorphism

$$\mathfrak{g}(\tilde{C} \setminus \Gamma \cdot \tilde{\vec{p}})^{\Gamma} \to \widehat{L}_n(\mathfrak{g}, \vec{\gamma}).$$

Hence given objects H
[˜] = (H₁, · · · , H_n) such that each H_i ∈ C^ℓ(g, γ_i), we obtain an action of g(C
[˜] \ Γ · p
[˜])^Γ on H₁ ⊗ · · · ⊗ H_n and we consider the vector space of coinvariants:

$$\mathcal{V}_{ec{\mathcal{H}}, \mathsf{\Gamma}}(ilde{\mathcal{C}} o \mathcal{C}, ilde{\mathcal{p}}, ilde{t}) \coloneqq \left[\mathcal{H}_1 \otimes \cdots \otimes \mathcal{H}_n
ight]_{\mathfrak{g}(ilde{\mathcal{C}} \setminus {\mathsf{\Gamma}} \cdot ilde{\mathcal{p}})^{\mathsf{\Gamma}}}.$$

 If Γ = {1}, we obtain the well studied notion of usual conformal blocks. In this case Tsuchiya-Ueno-Yamada proved that these spaces satisfy axioms of a modular functor like propagation of vacua, factorization, flat projective connection (when you work over families of curves) etc.

Twisted conformal blocks have been studied by various authors like Frenkel-Szczesny, Damiolini, Hong-Kumar. In case Γ preserves a Borel subalgebra of g, Hong-Kumar proved propagation of vacua and factorization theorem and that the sheaves of conformal blocks are coherent and in fact locally free.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- Twisted conformal blocks have been studied by various authors like Frenkel-Szczesny, Damiolini, Hong-Kumar. In case Γ preserves a Borel subalgebra of g, Hong-Kumar proved propagation of vacua and factorization theorem and that the sheaves of conformal blocks are coherent and in fact locally free.
- This naturally leads to the problem of determining the ranks of these bundles. In case $\Gamma = \{1\}$, the Verlinde formula answers this question.

Twisted Verlinde formula

Let (C, \vec{p}) be a smooth curve of genus g. The fundamental group of $C \setminus \vec{p}$ has a presentation of the form

 $\pi_1(\boldsymbol{C}\setminus \vec{\boldsymbol{p}}) = \langle \alpha_1, \beta_1, \cdots, \alpha_g, \beta_g, \mu_1, \cdots, \mu_n | [\alpha_1, \beta_1] \cdots [\alpha_g, \beta_g] \mu_1 \cdots \mu_n = 1 \rangle.$

Let us fix a group homomorphism $\chi : \pi_1(C \setminus \vec{p}, \star) \to \Gamma$ with image Γ° . Let $\gamma_i \in \Gamma$ be the image of μ_i . This determines an *n*-pointed admissible Γ -cover $(\tilde{C} \to C, \tilde{\vec{p}})$ such that all the lifts $\tilde{\vec{p}}$ lie in the same connected component of \tilde{C} and the monodromy around the points $\tilde{\vec{p}}$ is given by $\vec{\gamma}$.

Twisted Verlinde formula

In joint work with S. Mukhopadhyay, we prove

Theorem

Suppose that Γ preserves a Borel subalgebra in $\mathfrak{g}.$ Then

$$\dim \mathcal{V}_{\vec{\lambda},\Gamma}(\tilde{C} \to C, \vec{\tilde{p}}) = \sum_{\lambda \in \mathcal{P}^{\ell}(\mathfrak{g})^{\Gamma^{\circ}}} \frac{S_{\lambda_{1},\lambda}^{\gamma_{1}} \cdots S_{\lambda_{n},\lambda}^{\gamma_{n}}}{(S_{0,\lambda})^{n+2g-2}}.$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Twisted Verlinde formula

In joint work with S. Mukhopadhyay, we prove

Theorem

Suppose that Γ preserves a Borel subalgebra in $\mathfrak{g}.$ Then

$$\dim \mathcal{V}_{\vec{\lambda},\Gamma}(\tilde{\mathcal{C}} \to \mathcal{C}, \vec{\tilde{p}}) = \sum_{\lambda \in \mathcal{P}^{\ell}(\mathfrak{g})^{\Gamma^{\circ}}} \frac{S_{\lambda_{1},\lambda}^{\gamma_{1}} \cdots S_{\lambda_{n},\lambda}^{\gamma_{n}}}{(S_{0,\lambda})^{n+2g-2}}.$$

In the above formula, for any $\gamma \in \Gamma$, S^{γ} is a certain matrix known as the γ -crossed S-matrix which can be explicitly computed. The matrix S^{γ} is a $P^{\ell}(\mathfrak{g}, \gamma) \times P^{\ell}(\mathfrak{g})^{\gamma}$ -matrix. It is a square unitary matrix. Γ-crossed modular fusion category

To prove the twisted Verlinde formula, we prove the following results

Theorem

Suppose that Γ preserves a Borel subalgebra in g. Then the twisted conformal blocks equip the Γ -graded finite semisimple category

$$\bigoplus_{\gamma\in \mathsf{\Gamma}}\mathcal{C}^\ell(\mathfrak{g},\gamma)$$

with the structure of a Γ -crossed modular fusion category.

Γ-crossed modular fusion category

To prove the twisted Verlinde formula, we prove the following results

Theorem

Suppose that Γ preserves a Borel subalgebra in $\mathfrak{g}.$ Then the twisted conformal blocks equip the Γ -graded finite semisimple category

$$\bigoplus_{\gamma\in \mathsf{\Gamma}}\mathcal{C}^\ell(\mathfrak{g},\gamma)$$

with the structure of a Γ -crossed modular fusion category.

Theorem

There is a categorical twisted Verlinde formula that computes the fusion coefficients in any Γ -crossed modular fusion category in terms of crossed S-matrices.