Macdonald polynomials and level two Demazure modules for affine $\mathfrak{s l}_{n+1}$

Rekha Biswal
Max Planck Institute for Mathematics, Bonn Joint work with Vyjayanthi Chari, Peri Shereen and Jeffrey Wand

$$
\text { Aug 14, } 2019
$$

Notation

(1) \mathfrak{g} is a simple Lie algebra of rank n.
(2) P is the weight lattice and P^{+}is the dominant weight lattice of \mathfrak{g}.
(3) R is the root lattice and R^{+}is the positive root lattice of \mathfrak{g}.
(4) $P^{+}(1)=\left\{\omega_{i_{1}}+\cdots+\omega_{i_{k}}: i_{1}<\cdots<i_{k} \leq n\right\}$
(5) Given $\lambda \in P^{+}$, we write $\lambda=2 \lambda_{0}+\lambda_{1}$ where $\lambda_{0} \in P^{+}$and $\lambda_{1} \in P^{+}(1)$.
(6) For $\lambda \in P^{+}$, we define $\min (\lambda)=\min \left\{i \in[1, n]: \lambda\left(h_{i}\right)>0\right\}$ and $\max (\lambda)=\max \left\{i \in[1, n]: \lambda\left(h_{i}\right)>0\right\}$
(7) For $\lambda=\sum_{i=1}^{n} a_{i} \omega_{i}$, ht $\lambda=\sum_{i=1}^{n} a_{i}$ where ω_{i} 's are fundamental weights of \mathfrak{g}.
(8) $P_{\lambda}(z, q, t)$ is the symmetric Macdonald polynomial corresponding to the weight λ.
(9) $s_{\lambda}(z)$ is the Schur function corresponding to the weight λ.

In this talk, we are only considering the case when $\mathfrak{g}=\mathfrak{s l}_{n+1}$.

Theorem 1 (Biswal-Chari-Shereen-Wand(2019))

There exists a family of polynomials $G_{\lambda}(z, q) \in \mathbb{C}(q)\left[z_{1}, \cdots, z_{n+1}\right]$ such that:

$$
\begin{gather*}
G_{\lambda}(z, q)=\sum_{\mu \leq \lambda} \eta_{\lambda}^{\mu}(q) s_{\mu}(z), \quad \eta_{\lambda}^{\mu}(q) \in \mathbb{Z}_{+}[q], \quad \eta_{\lambda}^{\lambda}(q)=1 \tag{1}\\
P_{\lambda}(z, q, 0)=\sum_{\mu \leq \lambda} h_{\lambda}^{\mu}(q) G_{\mu}(z, q) \tag{2}
\end{gather*}
$$

where for $\mu=2 \mu_{0}+\mu_{1}$,

$$
h_{\lambda}^{\mu}(q)=q^{\frac{1}{2}\left(\lambda+\mu_{1}, \lambda-\mu\right)} \prod_{j=1}^{n}\left[\begin{array}{c}
\left(\lambda-\mu, \omega_{j}\right)+\left(\mu_{0}, \alpha_{j}\right) \tag{3}\\
\left(\lambda-\mu, \omega_{j}\right)
\end{array}\right]_{q}
$$

We prove the above theorem by realizing the polynomial $G_{\lambda}(z, q)$ as graded character of a finite dimensional module for $\mathfrak{g}[t]$.

Defining polynomials $G_{\lambda}(z, q)$

For $\lambda=2 \lambda_{0}+\lambda_{1} \in P^{+}$, let

$$
G_{\lambda}(z, q)=\sum_{\mu \in P} g_{\lambda}^{\mu}(q) P_{\mu}(z, q, 0), \quad g_{\lambda}^{\mu} \in \mathbb{Z}[q], \quad \mu \in P^{+}
$$

where $g_{\lambda}^{\mu}(q)$ are uniquely determined by requiring that they satisfy,

$$
g_{0}^{\mu}=\delta_{\mu, 0} \text { if } \mu \in P^{+} \text {and } g_{\lambda}^{\mu}=0 \text { if } \mu \notin P^{+}
$$

$$
\begin{equation*}
g_{2 \lambda_{0}+2 \omega_{j}}^{\mu}=q^{\left(2 \omega_{j}, 2 \lambda_{0}+2 \omega_{j}-\mu\right)}\left(g_{2 \lambda_{0}}^{\mu-2 \omega_{j}}-q^{-\left(\lambda_{0}-\mu+\omega_{j}, \alpha_{j}\right)} g_{2 \lambda_{0}}^{\mu-2 \omega_{j}+\alpha_{j}}\right), j \geq \max \lambda_{0} \tag{5}
\end{equation*}
$$

$$
\begin{equation*}
g_{\omega_{m}+2 \lambda_{0}}^{\mu}=q^{\left(\omega_{m}, 2 \lambda_{0}+\omega_{m}-\mu\right)} g_{2 \lambda_{0}}^{\mu-\omega_{m}}, \quad m \in[1, n] \tag{4}
\end{equation*}
$$

and if ht $\lambda_{1} \geq 2$ with $\min \lambda_{1}=m, \min \left(\lambda_{1}-\omega_{m}\right)=p$, then

$$
\begin{equation*}
g_{\lambda}^{\mu}=q^{\left(\omega_{m}, \lambda-\mu\right)} g_{\lambda-\omega_{m}}^{\mu-\omega_{m}}-q^{\left(\lambda_{0}, \alpha_{m, p}\right)+1+\left(\omega_{m-1}, \lambda-\mu\right)} g_{\lambda-\alpha_{m, p}-\omega_{m-1}}^{\mu-\omega_{m-1}} \tag{6}
\end{equation*}
$$

Definition of $\mathfrak{g}[t]$-modules $W_{\text {loc }}(\lambda)$ and $M(\nu, \lambda)$

- $W_{\text {loc }}(\lambda)$ is the cyclic $\mathfrak{g}[t]$-module generated by an element w_{λ} with the following relations:

$$
\begin{equation*}
\left(x_{i}^{+} \otimes 1\right) w_{\lambda}=0, \quad\left(h \otimes t^{r}\right) w_{\lambda}=\delta_{r, 0} \lambda(h) w_{\lambda},\left(x_{i}^{-} \otimes 1\right)^{\lambda\left(h_{i}\right)+1} w_{\lambda}=0 \tag{7}
\end{equation*}
$$

for all $i \in[1, n]$ and $h \in \mathfrak{h}$ and $W_{\text {loc }}(\lambda)$ are known to be finite dimensional.

- For $\nu, \lambda \in P^{+}$with $\lambda=2 \lambda_{0}+\lambda_{1}$, let $M(\nu, \lambda)$ be the $\mathfrak{g}[t]$-module generated by an element $w_{\nu, \lambda}$ with the following relations:

$$
\begin{gather*}
\left(x_{i}^{+} \otimes 1\right) w_{\nu, \lambda}=0, \quad\left(h \otimes t^{r}\right) w_{\nu, \lambda}=\delta_{r, 0}(\lambda+\nu)(h) w_{\nu, \lambda}, \tag{8}\\
\left(x_{i}^{-} \otimes 1\right)^{(\lambda+\nu)\left(h_{i}\right)+1} w_{\nu, \lambda}=0, \quad\left(x_{\alpha}^{-} \otimes t^{\nu\left(h_{\alpha}\right)+\left\lceil\lambda\left(h_{\alpha}\right) / 2\right\rceil}\right) w_{\nu, \lambda}=0, \tag{9}
\end{gather*}
$$

for all $i \in[1, n], h \in \mathfrak{h}$ and $\alpha \in R^{+}$.

Graded character

Both $W_{\text {loc }}(\lambda)$ and $M(\nu, \lambda)$ belong to the category of finite-dimensional \mathbb{Z}_{+}-graded modules for $\mathfrak{g}[t]$. An object of this category is a finite-dimensional module V for $\mathfrak{g}[t]$ which admits a compatible \mathbb{Z}-grading i.e.,

$$
V=\bigoplus_{s \in \mathbb{Z}} V[s], \quad\left(x \otimes t^{r}\right) V[s] \subset V[r+s], \quad x \in \mathfrak{g}, \quad r \in \mathbb{Z}_{+}
$$

For any $p \in \mathbb{Z}$ we let $\tau_{p}^{*} V$ be the graded module which is given by shifting the grades up by p and leaving the action of $\mathfrak{g}[t]$ unchanged. The morphisms between graded modules are $\mathfrak{g}[t]$-maps of grade zero. Clearly for any object V of this category the subspace $V[s]$ is a \mathfrak{g}-module and the graded character of V is the element of $\mathbb{Z}\left[q, q^{-1}\right][P]$ given by:

$$
\operatorname{ch}_{\mathrm{gr}} V=\sum_{s \in \mathbb{Z}} q^{s} \operatorname{ch} V[s]=\sum_{\mu \in P^{+}} \sum_{s \in \mathbb{Z}} \operatorname{dimHom}_{\mathfrak{g}}(V(\mu), V[s]) q^{s} \operatorname{ch} V(\mu)
$$

Demazure modules

Let $\hat{\mathfrak{g}}=\mathfrak{g} \otimes \mathbb{C}\left[t, t^{-1}\right] \bigoplus \mathbb{C} c \bigoplus \mathbb{C} d$ be an affine Lie algebra of rank $n+1$ and $V(\Lambda)$ be an irreducible integrable representation of $\hat{\mathfrak{g}}$. Then for an affine Weyl group element w, the extremal weight space $V(\Lambda)_{w \Lambda}$ of $V(\Lambda)$ is one dimensional. Let $v_{w \Lambda} \in V(\Lambda)$. Then the Demazure module $D_{\omega}(\Lambda)=\mathbb{U}(\mathfrak{b}) v_{w \Lambda}$ where \mathfrak{b} is the Borel subalgebra of $\hat{\mathfrak{g}}$ and $\mathbb{U}(\mathfrak{b})$ is the universal enveloping algebra of \mathfrak{b}. But $D_{w}(\Lambda)$ is not stable under the action of $\mathfrak{g}[t]$. $D_{w}(\Lambda)$ is $\mathfrak{g}[t]$-stable iff $w \Lambda\left(h_{i}\right) \leq 0$ for $1 \leq i \leq n$. Hence $w \Lambda=\ell \Lambda_{0}+\omega_{0} \lambda+m \delta$ for some $\ell \in \mathbb{Z}_{+}, \lambda \in P^{+}, m \in \mathbb{Z}$ where w_{0} is the longest Weyl group element of \mathfrak{g}. We denote such a Demazure module by $\tau_{m}^{*} D(\ell, \lambda)$. If $m=0$, we simply denote it by $D(\ell, \lambda)$. The modules $D(\ell, \lambda)$ are always finite-dimensional.

Motivation for $\mathfrak{g}[t]$-stable Demazure modules

- The characters of level one Demazure modules $D(1, \lambda)$ is equal to the specialization of symmetric Macdonald polynomials $P_{\lambda}(X, q, t)$ at $t=0$.
- $D(1, \lambda)$ is isomorphic to standard modules of Nakajima Quiver varieties.
- $D(1, \lambda)$ and $D(2, \lambda)$ appear as graded limits of tensor product of special classes of irreducible representations of quantum affine algebras.

The module $M(\nu, \lambda)$ is a \mathbb{Z}_{+}-graded $\mathfrak{g}[t]$-module once we declare the grade of $w_{\nu, \lambda}$ to be zero. In the case when $\lambda=0$, it is clear that the relation in $M_{\nu, 0}$ is a consequence of the relations in local Weyl module; in particular the module $M(\nu, 0)$ is just the local Weyl module, which is denoted as $W_{\text {loc }}(\nu)$. The local Weyl modules are known to be finite-dimensional. Since $M(\nu, \lambda)$ is obviously a quotient of $W_{\text {loc }}(\nu+\lambda)$ it follows that $M(\nu, \lambda)$ is also finite-dimensional. Moreover

$$
\operatorname{dimHom}_{\mathfrak{g}}(V(\mu), M(\nu, \lambda)) \neq 0
$$

$\Longrightarrow \quad \nu+\lambda-\mu \in Q^{+}, \quad \operatorname{dim} \operatorname{Hom}_{\mathfrak{g}}(V(\nu+\lambda), M(\nu, \lambda))=1$.

It is clear that the elements of the set $\left\{\operatorname{chgr}_{\mathrm{gr}} M(\mu, 0): \mu \in P^{+}\right\}$(resp. of the set $\left.\left\{\operatorname{chgr}_{\mathrm{gr}} M(0, \mu): \mu \in P^{+}\right\}\right)$are linearly independent and that their $\mathbb{Z}\left[q, q^{-1}\right]$ span contains ch $V(\lambda), \lambda \in P^{+}$. Hence we can write

$$
\operatorname{ch}_{\mathrm{gr}} M(\nu, \lambda)=\sum_{\mu \in P^{+}} g_{\nu, \lambda}^{\mu}(q) \mathrm{ch}_{\mathrm{gr}} M(\mu, 0)=\sum_{\mu \in P^{+}} h_{\nu, \lambda}^{\mu}(q) \operatorname{ch}_{\mathrm{gr}} M(0, \mu)
$$

where

$$
g_{\nu, \lambda}^{\nu+\lambda}=1=h_{\nu, \lambda}^{\nu+\lambda}, \quad g_{\nu, \lambda}^{\mu}=h_{\nu, \lambda}^{\mu}=0 \text { if } \lambda+\nu-\mu \notin Q^{+} .
$$

Moreover the linear independence also implies that for all $\nu, \mu \in P^{+}$,

$$
\begin{equation*}
\sum_{\mu^{\prime} \in P^{+}} h_{\nu, 0}^{\mu^{\prime}} g_{0, \mu^{\prime}}^{\mu}=\delta_{\nu, \mu}=\sum_{\mu^{\prime} \in P^{+}} g_{0, \nu}^{\mu^{\prime}} h_{\mu^{\prime}, 0}^{\mu} \tag{10}
\end{equation*}
$$

It is known that $W_{\text {loc }}(\nu)$ (equivalently $M(\nu, 0)$) is graded isomorphic to a Demazure module occurring in a level one representation of the affine Lie algebra $\mathfrak{s l}_{n+1}$. In particular using a result of Sanderson and lon, it follows that

$$
\begin{equation*}
\operatorname{ch}_{\mathrm{gr}} M(\nu, 0)=P_{\nu}(z, q, 0) \tag{11}
\end{equation*}
$$

admissible pair of dominant weights

We say that a pair $(\nu, \lambda) \in P^{+} \times P^{+}$is admissible if one of the following hold: write $\lambda=2 \lambda_{0}+\lambda_{1}, \nu=2 \nu_{0}+\nu_{1}$; then either

- $\lambda_{1}=0$, or
- $\lambda_{1} \neq 0, \nu_{0}=\omega_{i}$ for some $i \in[0, n]$ with $\max \nu_{1}<\min \lambda_{1}$ and if $i \in[1, n]$ we also require that $i<\min \lambda_{1}-1$ and $\nu_{1}\left(h_{i}\right)=\nu_{1}\left(h_{i+1}\right)=0$.

Key tool

The proof of Theorem 1 is using representation theory. The main tool is the following three short exact sequences. Let (ν, λ) be admissible.

- If $j \in[1, n]$ is such that $\nu\left(h_{j}\right) \geq 2$, then

$$
0 \rightarrow \tau_{\left(\lambda_{0}+\nu\right)\left(h_{j}\right)-1}^{*} M\left(\nu-\alpha_{j}, \lambda\right) \rightarrow M(\nu, \lambda) \rightarrow M\left(\nu-2 \omega_{j}, \lambda+2 \omega_{j}\right) \rightarrow 0
$$

- If $\nu_{0}=0$ and $\max \nu_{1}=m$ and $\min \lambda_{1}=p>0$ then

$$
\begin{aligned}
& 0 \rightarrow \tau_{\lambda_{0}\left(h_{m, p}\right)+1}^{*} M\left(\nu-\omega_{m}+\omega_{m-1}, \lambda-\omega_{p}+\omega_{p+1}\right) \rightarrow M(\nu, \lambda) \rightarrow \\
& M\left(\nu-\omega_{m}, \lambda+\omega_{m}\right) \rightarrow 0
\end{aligned}
$$

- If $\lambda \in P^{+}(1)$ and $m \in[0, n]$ with $m<\min \lambda$ for $\lambda \neq 0$, then

$$
0 \rightarrow \tau_{1}^{*} M\left(\omega_{m-1}, \lambda+\omega_{m+1}\right) \rightarrow M\left(\omega_{m}, \lambda+\omega_{m}\right) \rightarrow D\left(2, \lambda+2 \omega_{m}\right) \rightarrow 0
$$

and we also use the following fact: Given (ν, λ) admissible and $\mu \in P^{+}$we have

$$
g_{\nu, \lambda}^{\mu}=q^{(\lambda+\nu-\mu, \nu)} g_{\lambda}^{\mu-\nu} .
$$

Theorem 2 (Biswal, Chari, Shereen, Wand(2019))

For admissible pairs (ν, λ), the following holds:

$$
M(\nu, \lambda) \cong D(1, \nu) * D(2, \lambda)
$$

In particular,

$$
M(0, \lambda) \cong D(2, \lambda), M(\nu, 0) \cong D(1, \nu)
$$

The following corollary tells us that $G_{\lambda}(z, q)$ are characters of level two Demazure modules $D(2, \lambda)$.

Corollary 3
For $\lambda, \nu \in P^{+}$we have

$$
\begin{gathered}
c h_{g r} M(0, \lambda)=G_{\lambda}(z, q), \text { i.e. } g_{0, \lambda}^{\mu}(q)=g_{\lambda}^{\mu}(q) \\
c h_{g r} M(\nu, 0)=P_{\nu}(z, q, 0)
\end{gathered}
$$

Theorem 4 (Katsuyuki Naoi(2010))

Let \mathfrak{g} be a simple Lie algebra. If $m \geq \ell$, then $D(\ell, \lambda)$ admits a filtration by level m-Demazure modules i.e there exists a sequece

$$
(0) \subseteq V_{0} \subseteq V_{1} \subseteq \cdots \subseteq V_{r}=D(\ell, \lambda)
$$

of graded submodules such that each successive quotient $\frac{V_{i}}{V_{i-1}}$ is isomorphic to some Demazure module of level m..

Notation

- Numerical Multiplicity:
$[D(\ell, \lambda): D(m, \mu)]=$ The number of successive quotients that are isomorphic to the module $D(m, \mu)$.
- Graded or q-multiplicity(reduces to numerical multiplicity at $q=1$): $[D(\ell, \lambda): D(m, \mu)]_{q}=\sum_{i: \frac{v_{i}}{v_{i-1}} \cong D(m, \mu)} q^{\text {min grade } V_{i}}$
- Independent of the filtration.
- $[D(\ell, \lambda): D(m, \mu)] \neq 0$ implies $\lambda-\mu \in R^{+}$.

As a consequence of our main theorem, we get the following corollary:

Corollary 5

For $\mu=2 \mu_{0}+\mu_{1}$,

$$
[D(1, \lambda): D(2, \mu)]_{q}=q^{\frac{1}{2}\left(\lambda+\mu_{1}, \lambda-\mu\right)} \prod_{j=1}^{n}\left[\begin{array}{c}
\left(\lambda-\mu, \omega_{j}\right)+\left(\mu_{0}, \alpha_{j}\right) \\
\left(\lambda-\mu, \omega_{j}\right)
\end{array}\right]_{q}
$$

connections to number theory

(1) $\sum_{k=0}^{\infty}[D(1,(m+2 k) \omega): D(3, m \omega)]_{q} x^{k}$ are known to be mock theta functions after specializing x to integer powers of q in the case $\mathfrak{g}=\mathfrak{s l}_{2}$. (2) $\sum_{\alpha \in R^{+}}[D(1, \alpha): D(2,0)] X^{\alpha}$ are also cone theta functions.
(3) Is there any connection of $\sum_{\mu \in P^{+}}[D(1, \lambda): D(m, \mu)] X^{\lambda-\mu}$ to mock modular forms for any $m>1$?

Further questions

- What is the combinatorial interpretation of the polynomials $G_{\lambda}(z, q)$ and $\eta_{\lambda}^{\mu}(q)$?
- Is there any geometric interpretation of the coefficients of powers of q in the polynomials $[D(\ell, \lambda): D(m, \mu)]_{q}$ for $m \geq \ell$?
- Is polynomial coming from the character of $\mathfrak{g}[t]$-modules $M(\lambda, \mu)$ related to some well-known polynomials now that we know them for the extreme cases either for $\lambda=0$ or for $\mu=0$?

Reference:

- Rekha Biswal, Vyjayanthi Chari, Lisa Schneider, Sankaran Viswanath; "Demazure flags, Chebyshev polynomials, Partial and Mock Theta functions", arxiv: 1502.05322, (journal of Combinatorial Theory Series A).
- Rekha Biswal, Vyjayanthi Chari and Deniz Kus; "Demazure flags, q-Fibonacci polynomials and hypergeometric series" (Res. Math. Sci)
- Rekha Biswal, Vyjayanthi Chari, Peri Shereen and Jeffrey Wand; "Macdonald polynomials and level two Demazure modules for affine $\mathfrak{s l}_{n+1}$ " (In preparation)
- Rekha Biswal and Deniz Kus; "A combinatorial formulae for graded multiplicities in excellent filtrations", (to appear in Transformation groups)

Thank you

