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Notation

(1) g is a simple Lie algebra of rank n.
(2) P is the weight lattice and P+ is the dominant weight lattice of g.
(3) R is the root lattice and R+ is the positive root lattice of g.
(4) P+(1) = {ωi1 + · · ·+ ωik : i1 < · · · < ik ≤ n}
(5) Given λ ∈ P+, we write λ = 2λ0 +λ1 where λ0 ∈ P+ and λ1 ∈ P+(1).
(6) For λ ∈ P+, we define min(λ) = min{i ∈ [1, n] : λ(hi ) > 0} and
max(λ) = max{i ∈ [1, n] : λ(hi ) > 0}
(7) For λ =

∑n
i=1 aiωi , htλ =

∑n
i=1 ai where ωi ’s are fundamental weights

of g.
(8) Pλ(z , q, t) is the symmetric Macdonald polynomial corresponding to
the weight λ.
(9) sλ(z) is the Schur function corresponding to the weight λ.
In this talk, we are only considering the case when g = sln+1.
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Theorem 1 (Biswal-Chari-Shereen-Wand(2019))

There exists a family of polynomials Gλ(z , q) ∈ C(q)[z1, · · · , zn+1] such
that:

Gλ(z , q) =
∑
µ≤λ

ηµλ(q)sµ(z), ηµλ(q) ∈ Z+[q], ηλλ(q) = 1, (1)

Pλ(z , q, 0) =
∑
µ≤λ

hµλ(q)Gµ(z , q), (2)

where for µ = 2µ0 + µ1,

hµλ(q) = q
1
2

(λ+µ1, λ−µ)
n∏

j=1

[
(λ− µ, ωj) + (µ0, αj)

(λ− µ, ωj)

]
q

. (3)

We prove the above theorem by realizing the polynomial Gλ(z , q) as
graded character of a finite dimensional module for g[t].
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Defining polynomials Gλ(z , q)

For λ = 2λ0 + λ1 ∈ P+, let

Gλ(z , q) =
∑
µ∈P

gµλ (q)Pµ(z , q, 0), gµλ ∈ Z[q], µ ∈ P+.

where gµλ (q) are uniquely determined by requiring that they satisfy,

gµ0 = δµ,0 if µ ∈ P+ and gµλ = 0 if µ /∈ P+,

gµ2λ0+2ωj
= q(2ωj ,2λ0+2ωj−µ)

(
g
µ−2ωj

2λ0
− q−(λ0−µ+ωj ,αj )g

µ−2ωj+αj

2λ0

)
, j ≥ maxλ0,

(4)
gµωm+2λ0

= q(ωm,2λ0+ωm−µ)gµ−ωm

2λ0
, m ∈ [1, n] (5)

and if htλ1 ≥ 2 with minλ1 = m, min(λ1 − ωm) = p, then

gµλ = q(ωm,λ−µ)gµ−ωm

λ−ωm
− q(λ0,αm,p)+1+(ωm−1,λ−µ)g

µ−ωm−1

λ−αm,p−ωm−1
. (6)
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Definition of g[t]-modules Wloc(λ) and M(ν, λ)

Wloc(λ) is the cyclic g[t]–module generated by an element wλ with
the following relations:

(x+
i ⊗1)wλ = 0, (h⊗tr )wλ = δr ,0λ(h)wλ, (x

−
i ⊗1)λ(hi )+1wλ = 0 (7)

for all i ∈ [1, n] and h ∈ h and Wloc(λ) are known to be finite
dimensional.

For ν, λ ∈ P+ with λ = 2λ0 + λ1, let M(ν, λ) be the g[t]–module
generated by an element wν,λ with the following relations:

(x+
i ⊗ 1)wν,λ = 0, (h ⊗ tr )wν,λ = δr ,0(λ+ ν)(h)wν,λ, (8)

(x−i ⊗ 1)(λ+ν)(hi )+1wν,λ = 0, (x−α ⊗ tν(hα)+dλ(hα)/2e)wν,λ = 0, (9)

for all i ∈ [1, n], h ∈ h and α ∈ R+.
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Graded character

Both Wloc(λ) and M(ν, λ) belong to the category of finite–dimensional
Z+–graded modules for g[t]. An object of this category is a
finite-dimensional module V for g[t] which admits a compatible Z–grading
i.e.,

V =
⊕
s∈Z

V [s], (x ⊗ tr )V [s] ⊂ V [r + s], x ∈ g, r ∈ Z+.

For any p ∈ Z we let τ∗pV be the graded module which is given by shifting
the grades up by p and leaving the action of g[t] unchanged. The
morphisms between graded modules are g[t]-maps of grade zero. Clearly
for any object V of this category the subspace V [s] is a g–module and the
graded character of V is the element of Z[q, q−1][P] given by:

chgrV =
∑
s∈Z

qschV [s] =
∑
µ∈P+

∑
s∈Z

dimHomg(V (µ),V [s])qschV (µ).
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Demazure modules

Let ĝ = g⊗ C[t, t−1]
⊕

Cc
⊕

Cd be an affine Lie algebra of rank n + 1
and V (Λ) be an irreducible integrable representation of ĝ. Then for an
affine Weyl group element w , the extremal weight space V (Λ)wΛ of V (Λ)
is one dimensional. Let vwΛ ∈ V (Λ). Then the Demazure module
Dω(Λ) = U(b)vwΛ where b is the Borel subalgebra of ĝ and U(b) is the
universal enveloping algebra of b. But Dw (Λ) is not stable under the
action of g[t]. Dw (Λ) is g[t]-stable iff wΛ(hi ) ≤ 0 for 1 ≤ i ≤ n. Hence
wΛ = `Λ0 + ω0λ+ mδ for some ` ∈ Z+, λ ∈ P+,m ∈ Z where w0 is the
longest Weyl group element of g. We denote such a Demazure module by
τ∗mD(`, λ). If m = 0, we simply denote it by D(`, λ). The modules D(`, λ)
are always finite-dimensional.
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Motivation for g[t]-stable Demazure modules

The characters of level one Demazure modules D(1, λ) is equal to the
specialization of symmetric Macdonald polynomials Pλ(X , q, t) at
t = 0.

D(1, λ) is isomorphic to standard modules of Nakajima Quiver
varieties.

D(1, λ) and D(2, λ) appear as graded limits of tensor product of
special classes of irreducible representations of quantum affine
algebras.
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The module M(ν, λ) is a Z+-graded g[t]–module once we declare the
grade of wν,λ to be zero. In the case when λ = 0, it is clear that the
relation in Mν,0 is a consequence of the relations in local Weyl module; in
particular the module M(ν, 0) is just the local Weyl module, which is
denoted as Wloc(ν). The local Weyl modules are known to be
finite–dimensional. Since M(ν, λ) is obviously a quotient of Wloc(ν + λ) it
follows that M(ν, λ) is also finite–dimensional. Moreover

dimHomg(V (µ),M(ν, λ)) 6= 0

=⇒ ν + λ− µ ∈ Q+, dimHomg(V (ν + λ),M(ν, λ)) = 1.
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It is clear that the elements of the set {chgrM(µ, 0) : µ ∈ P+} (resp. of
the set {chgrM(0, µ) : µ ∈ P+}) are linearly independent and that their
Z[q, q−1] span contains chV (λ), λ ∈ P+. Hence we can write

chgrM(ν, λ) =
∑
µ∈P+

gµν,λ(q)chgrM(µ, 0) =
∑
µ∈P+

hµν,λ(q)chgrM(0, µ),

where

gν+λ
ν,λ = 1 = hν+λ

ν,λ , gµν,λ = hµν,λ = 0 if λ+ ν − µ /∈ Q+.

Moreover the linear independence also implies that for all ν, µ ∈ P+,∑
µ′∈P+

hµ
′

ν,0g
µ
0,µ′ = δν,µ =

∑
µ′∈P+

gµ
′

0,νh
µ
µ′,0. (10)

It is known that Wloc(ν) (equivalently M(ν, 0)) is graded isomorphic to a
Demazure module occurring in a level one representation of the affine Lie
algebra sln+1. In particular using a result of Sanderson and Ion, it follows
that

chgrM(ν, 0) = Pν(z , q, 0). (11)
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admissible pair of dominant weights

We say that a pair (ν, λ) ∈ P+ × P+ is admissible if one of the following
hold: write λ = 2λ0 + λ1, ν = 2ν0 + ν1; then either
• λ1 = 0, or
• λ1 6= 0, ν0 = ωi for some i ∈ [0, n] with maxν1 < minλ1 and if i ∈ [1, n]
we also require that i < minλ1 − 1 and ν1(hi ) = ν1(hi+1) = 0.
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Key tool

The proof of Theorem 1 is using representation theory. The main tool is
the following three short exact sequences. Let (ν, λ) be admissible.

If j ∈ [1, n] is such that ν(hj) ≥ 2, then

0→ τ∗(λ0+ν)(hj )−1M(ν−αj , λ)→ M(ν, λ)→ M(ν−2ωj , λ+2ωj)→ 0.

If ν0 = 0 and maxν1 = m and minλ1 = p > 0 then
0→ τ∗λ0(hm,p)+1M(ν − ωm + ωm−1, λ− ωp + ωp+1)→ M(ν, λ)→
M(ν − ωm, λ+ ωm)→ 0.

If λ ∈ P+(1) and m ∈ [0, n] with m < minλ for λ 6= 0, then

0→ τ∗1M(ωm−1, λ+ωm+1)→ M(ωm, λ+ωm)→ D(2, λ+ 2ωm)→ 0.

and we also use the following fact: Given (ν, λ) admissible and µ ∈ P+ we
have

gµν,λ = q(λ+ν−µ,ν)gµ−νλ .
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Theorem 2 (Biswal, Chari, Shereen, Wand(2019))

For admissible pairs (ν, λ), the following holds:

M(ν, λ) ∼= D(1, ν) ∗ D(2, λ)

In particular,
M(0, λ) ∼= D(2, λ),M(ν, 0) ∼= D(1, ν)

The following corollary tells us that Gλ(z , q) are characters of level two
Demazure modules D(2, λ).

Corollary 3

For λ, ν ∈ P+ we have

chgrM(0, λ) = Gλ(z , q), i.e. gµ0,λ(q) = gµλ (q).

chgrM(ν, 0) = Pν(z , q, 0)
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Theorem 4 (Katsuyuki Naoi(2010))

Let g be a simple Lie algebra. If m ≥ `, then D(`, λ) admits a filtration by
level m-Demazure modules i.e there exists a sequece

(0) ⊆ V0 ⊆ V1 ⊆ · · · ⊆ Vr = D(`, λ)

of graded submodules such that each successive quotient Vi
Vi−1

is
isomorphic to some Demazure module of level m..
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Notation

Numerical Multiplicity:
[D(`, λ) : D(m, µ)]=The number of successive quotients that are
isomorphic to the module D(m, µ).

Graded or q-multiplicity(reduces to numerical multiplicity at q = 1):
[D(`, λ) : D(m, µ)]q =

∑
i :

Vi
Vi−1

∼=D(m,µ)
qmin grade Vi

Independent of the filtration.

[D(`, λ) : D(m, µ)] 6= 0 implies λ− µ ∈ R+ .
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As a consequence of our main theorem, we get the following corollary:

Corollary 5

For µ = 2µ0 + µ1,

[D(1, λ) : D(2, µ)]q = q
1
2

(λ+µ1, λ−µ)
n∏

j=1

[
(λ− µ, ωj) + (µ0, αj)

(λ− µ, ωj)

]
q
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connections to number theory

(1)
∑∞

k=0[D(1, (m + 2k)ω) : D(3,mω)]qx
k are known to be mock theta

functions after specializing x to integer powers of q in the case g = sl2.
(2)

∑
α∈R+ [D(1, α) : D(2, 0)]Xα are also cone theta functions.

(3) Is there any connection of
∑

µ∈P+ [D(1, λ) : D(m, µ)]Xλ−µ to mock
modular forms for any m > 1?
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Further questions

What is the combinatorial interpretation of the polynomials Gλ(z , q)
and ηµλ(q)?

Is there any geometric interpretation of the coefficients of powers of q
in the polynomials [D(`, λ) : D(m, µ)]q for m ≥ `?
Is polynomial coming from the character of g[t]-modules M(λ, µ)
related to some well-known polynomials now that we know them for
the extreme cases either for λ = 0 or for µ = 0?
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Thank you
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