Macdonald polynomials and level two Demazure modules for affine \mathfrak{sl}_{n+1}

Rekha Biswal Max Planck Institute for Mathematics, Bonn Joint work with Vyjayanthi Chari, Peri Shereen and Jeffrey Wand

Aug 14 , 2019

Rekha Biswal Max Planck Institute for MathMacdonald polynomials and level two Demazu

Aug 14, 2019 1 / 20

Notation

(1) g is a simple Lie algebra of rank n. (2) P is the weight lattice and P⁺ is the dominant weight lattice of g. (3) R is the root lattice and R⁺ is the positive root lattice of g. (4) P⁺(1) = { $\omega_{i_1} + \cdots + \omega_{i_k} : i_1 < \cdots < i_k \le n$ } (5) Given $\lambda \in P^+$, we write $\lambda = 2\lambda_0 + \lambda_1$ where $\lambda_0 \in P^+$ and $\lambda_1 \in P^+(1)$. (6) For $\lambda \in P^+$, we define min(λ) = min{ $i \in [1, n] : \lambda(h_i) > 0$ } and max(λ) = max{ $i \in [1, n] : \lambda(h_i) > 0$ } (7) For $\lambda = \sum_{i=1}^{n} a_i \omega_i$, ht $\lambda = \sum_{i=1}^{n} a_i$ where ω_i 's are fundamental weights of g.

(8) $P_{\lambda}(z, q, t)$ is the symmetric Macdonald polynomial corresponding to the weight λ .

(9) $s_{\lambda}(z)$ is the Schur function corresponding to the weight λ .

In this talk, we are only considering the case when $\mathfrak{g} = \mathfrak{sl}_{n+1}$.

E SQA

通 ト イヨ ト イヨト

Theorem 1 (Biswal-Chari-Shereen-Wand(2019))

There exists a family of polynomials $G_{\lambda}(z,q) \in \mathbb{C}(q)[z_1, \cdots, z_{n+1}]$ such that:

$$egin{aligned} G_\lambda(z,q) &= \sum_{\mu \leq \lambda} \eta^\mu_\lambda(q) s_\mu(z), & \eta^\mu_\lambda(q) \in \mathbb{Z}_+[q], & \eta^\lambda_\lambda(q) = 1, \ P_\lambda(z,q,0) &= \sum_{\mu \leq \lambda} h^\mu_\lambda(q) G_\mu(z,q), \end{aligned}$$

where for $\mu=2\mu_0+\mu_1$,

$$h_{\lambda}^{\mu}(q) = q^{\frac{1}{2}(\lambda+\mu_1, \lambda-\mu)} \prod_{j=1}^{n} \begin{bmatrix} (\lambda-\mu, \omega_j) + (\mu_0, \alpha_j) \\ (\lambda-\mu, \omega_j) \end{bmatrix}_{q}.$$
 (3)

We prove the above theorem by realizing the polynomial $G_{\lambda}(z,q)$ as graded character of a finite dimensional module for $\mathfrak{g}[t]$.

Defining polynomials $G_{\lambda}(z,q)$

For
$$\lambda = 2\lambda_0 + \lambda_1 \in P^+$$
, let
 $G_\lambda(z,q) = \sum_{\mu \in P} g^\mu_\lambda(q) P_\mu(z,q,0), \ \ g^\mu_\lambda \in \mathbb{Z}[q], \ \ \mu \in P^+.$

where $g_{\lambda}^{\mu}(q)$ are uniquely determined by requiring that they satisfy,

$$g_0^\mu = \delta_{\mu,0} ext{ if } \mu \in P^+ ext{ and } g_\lambda^\mu = 0 ext{ if } \mu \notin P^+,$$

$$g_{2\lambda_{0}+2\omega_{j}}^{\mu} = q^{(2\omega_{j},2\lambda_{0}+2\omega_{j}-\mu)} \begin{pmatrix} g_{2\lambda_{0}}^{\mu-2\omega_{j}} - q^{-(\lambda_{0}-\mu+\omega_{j},\alpha_{j})} g_{2\lambda_{0}}^{\mu-2\omega_{j}+\alpha_{j}} \end{pmatrix}, j \ge \max \lambda_{0}$$

$$g_{\omega_{m}+2\lambda_{0}}^{\mu} = q^{(\omega_{m},2\lambda_{0}+\omega_{m}-\mu)} g_{2\lambda_{0}}^{\mu-\omega_{m}}, \quad m \in [1,n]$$
(4)
$$g_{\omega_{m}+2\lambda_{0}}^{\mu} = q^{(\omega_{m},2\lambda_{0}+\omega_{m}-\mu)} g_{2\lambda_{0}}^{\mu-\omega_{m}}, \quad m \in [1,n]$$
(5)
and if $ht\lambda_{1} \ge 2$ with $\min \lambda_{1} = m, \min(\lambda_{1}-\omega_{m}) = p$, then

$$g_{\lambda}^{\mu} = q^{(\omega_{m},\lambda-\mu)}g_{\lambda-\omega_{m}}^{\mu-\omega_{m}} - q^{(\lambda_{0},\alpha_{m,p})+1+(\omega_{m-1},\lambda-\mu)}g_{\lambda-\alpha_{m,p}-\omega_{m-1}}^{\mu-\omega_{m-1}}.$$
(6)

Rekha Biswal Max Planck Institute for MathMacdonald polynomials and level two Demazu

Aug 14 , 2019 4 / 20

Definition of $\mathfrak{g}[t]$ -modules $W_{loc}(\lambda)$ and $M(\nu, \lambda)$

 W_{loc}(λ) is the cyclic g[t]-module generated by an element w_λ with the following relations:

$$(x_i^+ \otimes 1)w_\lambda = 0, \ (h \otimes t^r)w_\lambda = \delta_{r,0}\lambda(h)w_\lambda, (x_i^- \otimes 1)^{\lambda(h_i)+1}w_\lambda = 0 \ (7)$$

for all $i \in [1, n]$ and $h \in \mathfrak{h}$ and $W_{loc}(\lambda)$ are known to be finite dimensional.

For ν, λ ∈ P⁺ with λ = 2λ₀ + λ₁, let M(ν, λ) be the g[t]-module generated by an element w_{ν,λ} with the following relations:

$$(x_i^+\otimes 1)w_{\nu,\lambda}=0, \ (h\otimes t^r)w_{\nu,\lambda}=\delta_{r,0}(\lambda+\nu)(h)w_{\nu,\lambda},$$
 (8)

$$(x_i^-\otimes 1)^{(\lambda+\nu)(h_i)+1}w_{\nu,\lambda}=0, \ (x_\alpha^-\otimes t^{\nu(h_\alpha)+\lceil\lambda(h_\alpha)/2\rceil})w_{\nu,\lambda}=0, \ (9)$$

for all $i \in [1, n]$, $h \in \mathfrak{h}$ and $\alpha \in R^+$.

Graded character

Both $W_{\text{loc}}(\lambda)$ and $M(\nu, \lambda)$ belong to the category of finite-dimensional \mathbb{Z}_+ -graded modules for $\mathfrak{g}[t]$. An object of this category is a finite-dimensional module V for $\mathfrak{g}[t]$ which admits a compatible \mathbb{Z} -grading i.e.,

$$V = \bigoplus_{s \in \mathbb{Z}} V[s], \ (x \otimes t^r) V[s] \subset V[r+s], \ x \in \mathfrak{g}, \ r \in \mathbb{Z}_+.$$

For any $p \in \mathbb{Z}$ we let $\tau_p^* V$ be the graded module which is given by shifting the grades up by p and leaving the action of $\mathfrak{g}[t]$ unchanged. The morphisms between graded modules are $\mathfrak{g}[t]$ -maps of grade zero. Clearly for any object V of this category the subspace V[s] is a \mathfrak{g} -module and the graded character of V is the element of $\mathbb{Z}[q, q^{-1}][P]$ given by:

$$\operatorname{ch}_{\operatorname{gr}} V = \sum_{s \in \mathbb{Z}} q^{s} \operatorname{ch} V[s] = \sum_{\mu \in P^{+}} \sum_{s \in \mathbb{Z}} \operatorname{dim} \operatorname{Hom}_{\mathfrak{g}}(V(\mu), V[s]) q^{s} \operatorname{ch} V(\mu).$$

▲□ ▶ ▲ □ ▶ ▲ □ ▶ □ ● ● ● ● ●

Let $\hat{\mathfrak{g}} = \mathfrak{g} \otimes \mathbb{C}[t, t^{-1}] \bigoplus \mathbb{C}c \bigoplus \mathbb{C}d$ be an affine Lie algebra of rank n+1and $V(\Lambda)$ be an irreducible integrable representation of $\hat{\mathfrak{g}}$. Then for an affine Weyl group element w, the extremal weight space $V(\Lambda)_{w\Lambda}$ of $V(\Lambda)$ is one dimensional. Let $v_{w\Lambda} \in V(\Lambda)$. Then the Demazure module $D_{\omega}(\Lambda) = \mathbb{U}(\mathfrak{b})v_{w\Lambda}$ where \mathfrak{b} is the Borel subalgebra of $\hat{\mathfrak{g}}$ and $\mathbb{U}(\mathfrak{b})$ is the universal enveloping algebra of \mathfrak{b} . But $D_w(\Lambda)$ is not stable under the action of $\mathfrak{g}[t]$. $D_w(\Lambda)$ is $\mathfrak{g}[t]$ -stable iff $w\Lambda(h_i) \leq 0$ for $1 \leq i \leq n$. Hence $w\Lambda = \ell \Lambda_0 + \omega_0 \lambda + m\delta$ for some $\ell \in \mathbb{Z}_+, \lambda \in P^+, m \in \mathbb{Z}$ where w_0 is the longest Weyl group element of g. We denote such a Demazure module by $\tau_m^* D(\ell, \lambda)$. If m = 0, we simply denote it by $D(\ell, \lambda)$. The modules $D(\ell, \lambda)$ are always finite-dimensional.

(過) () ティート () 日

Motivation for $\mathfrak{g}[t]$ -stable Demazure modules

- The characters of level one Demazure modules D(1, λ) is equal to the specialization of symmetric Macdonald polynomials P_λ(X, q, t) at t = 0.
- D(1, λ) is isomorphic to standard modules of Nakajima Quiver varieties.
- D(1, λ) and D(2, λ) appear as graded limits of tensor product of special classes of irreducible representations of quantum affine algebras.

The module $M(\nu, \lambda)$ is a \mathbb{Z}_+ -graded $\mathfrak{g}[t]$ -module once we declare the grade of $w_{\nu,\lambda}$ to be zero. In the case when $\lambda = 0$, it is clear that the relation in $M_{\nu,0}$ is a consequence of the relations in local Weyl module; in particular the module $M(\nu, 0)$ is just the local Weyl module, which is denoted as $W_{\text{loc}}(\nu)$. The local Weyl modules are known to be finite-dimensional. Since $M(\nu, \lambda)$ is obviously a quotient of $W_{\text{loc}}(\nu + \lambda)$ it follows that $M(\nu, \lambda)$ is also finite-dimensional. Moreover

 $\dim \operatorname{Hom}_{\mathfrak{g}}(V(\mu), M(\nu, \lambda)) \neq 0$

$$\implies \quad \nu+\lambda-\mu\in Q^+, \ \ \mathsf{dim}\mathsf{Hom}_\mathfrak{g}(\mathit{V}(\nu+\lambda), \mathit{M}(\nu,\lambda))=1.$$

向下 イヨト イヨト 二日

It is clear that the elements of the set $\{ch_{gr}M(\mu, 0) : \mu \in P^+\}$ (resp. of the set $\{ch_{gr}M(0, \mu) : \mu \in P^+\}$) are linearly independent and that their $\mathbb{Z}[q, q^{-1}]$ span contains $chV(\lambda)$, $\lambda \in P^+$. Hence we can write

$$\operatorname{ch}_{\operatorname{gr}} M(\nu, \lambda) = \sum_{\mu \in \mathcal{P}^+} g^{\mu}_{
u, \lambda}(q) \operatorname{ch}_{\operatorname{gr}} M(\mu, 0) = \sum_{\mu \in \mathcal{P}^+} h^{\mu}_{
u, \lambda}(q) \operatorname{ch}_{\operatorname{gr}} M(0, \mu),$$

where

$$g_{\nu,\lambda}^{\nu+\lambda}=1=h_{\nu,\lambda}^{\nu+\lambda}, \ g_{\nu,\lambda}^{\mu}=h_{\nu,\lambda}^{\mu}=0 \ \text{if} \ \lambda+\nu-\mu\notin Q^+.$$

Moreover the linear independence also implies that for all $u, \mu \in P^+$,

$$\sum_{\mu'\in P^+} h_{\nu,0}^{\mu'} g_{0,\mu'}^{\mu} = \delta_{\nu,\mu} = \sum_{\mu'\in P^+} g_{0,\nu}^{\mu'} h_{\mu',0}^{\mu}.$$
 (10)

It is known that $W_{loc}(\nu)$ (equivalently $M(\nu, 0)$) is graded isomorphic to a Demazure module occurring in a level one representation of the affine Lie algebra \mathfrak{sl}_{n+1} . In particular using a result of Sanderson and Ion, it follows that

$$ch_{gr}M(\nu,0) = P_{\nu}(z,q,0).$$
 (11)

We say that a pair $(\nu, \lambda) \in P^+ \times P^+$ is admissible if one of the following hold: write $\lambda = 2\lambda_0 + \lambda_1$, $\nu = 2\nu_0 + \nu_1$; then either

• $\lambda_1 = 0$, or

• $\lambda_1 \neq 0$, $\nu_0 = \omega_i$ for some $i \in [0, n]$ with $\max \nu_1 < \min \lambda_1$ and if $i \in [1, n]$ we also require that $i < \min \lambda_1 - 1$ and $\nu_1(h_i) = \nu_1(h_{i+1}) = 0$.

Key tool

The proof of Theorem 1 is using representation theory. The main tool is the following three short exact sequences. Let (ν, λ) be admissible.

• If
$$j \in [1, n]$$
 is such that $u(h_j) \geq 2$, then

$$0 \to \tau^*_{(\lambda_0+\nu)(h_j)-1} \mathcal{M}(\nu-\alpha_j,\lambda) \to \mathcal{M}(\nu,\lambda) \to \mathcal{M}(\nu-2\omega_j,\lambda+2\omega_j) \to 0.$$

• If
$$\nu_0 = 0$$
 and $\max \nu_1 = m$ and $\min \lambda_1 = p > 0$ then
 $0 \rightarrow \tau^*_{\lambda_0(h_{m,p})+1} M(\nu - \omega_m + \omega_{m-1}, \lambda - \omega_p + \omega_{p+1}) \rightarrow M(\nu, \lambda) \rightarrow M(\nu - \omega_m, \lambda + \omega_m) \rightarrow 0.$

• If $\lambda \in P^+(1)$ and $m \in [0, n]$ with $m < \min \lambda$ for $\lambda \neq 0$, then

$$0 \to \tau_1^* M(\omega_{m-1}, \lambda + \omega_{m+1}) \to M(\omega_m, \lambda + \omega_m) \to D(2, \lambda + 2\omega_m) \to 0.$$

and we also use the following fact: Given (ν, λ) admissible and $\mu \in P^+$ we have

$$g^{\mu}_{
u,\lambda}=q^{(\lambda+
u-\mu,
u)}g^{\mu-
u}_{\lambda}.$$

Theorem 2 (Biswal, Chari, Shereen, Wand(2019)) For admissible pairs (ν, λ) , the following holds:

 $M(\nu,\lambda) \cong D(1,\nu) * D(2,\lambda)$

In particular,

$$M(0,\lambda) \cong D(2,\lambda), M(\nu,0) \cong D(1,\nu)$$

The following corollary tells us that $G_{\lambda}(z, q)$ are characters of level two Demazure modules $D(2, \lambda)$.

Corollary 3

For $\lambda, \nu \in P^+$ we have

$$ch_{gr}M(0,\lambda)= \mathcal{G}_{\lambda}(z,q), \hspace{0.2cm} \textit{i.e.} \hspace{0.2cm} g^{\mu}_{0,\lambda}(q)=g^{\mu}_{\lambda}(q).$$

$$ch_{gr}M(\nu,0)=P_{\nu}(z,q,0)$$

Rekha Biswal Max Planck Institute for MathMacdonald polynomials and level two Demazı

イロン イヨン イヨン イヨン

Theorem 4 (Katsuyuki Naoi(2010))

Let g be a simple Lie algebra. If $m \ge \ell$, then $D(\ell, \lambda)$ admits a filtration by level m-Demazure modules i.e there exists a sequece

$$(0)\subseteq V_0\subseteq V_1\subseteq\cdots\subseteq V_r=D(\ell,\lambda)$$

of graded submodules such that each successive quotient $\frac{V_i}{V_{i-1}}$ is isomorphic to some Demazure module of level m..

14 / 20

Notation

- Numerical Multiplicity: [D(ℓ, λ) : D(m, μ)]=The number of successive quotients that are isomorphic to the module D(m, μ).
- Graded or q-multiplicity(reduces to numerical multiplicity at q = 1): $[D(\ell, \lambda) : D(m, \mu)]_q = \sum_{i: \frac{V_i}{V_{i-1}} \cong D(m, \mu)} q^{min \ grade \ V_i}$
- Independent of the filtration.
- $[D(\ell, \lambda) : D(m, \mu)] \neq 0$ implies $\lambda \mu \in R^+$.

As a consequence of our main theorem, we get the following corollary:

Corollary 5
For
$$\mu = 2\mu_0 + \mu_1$$
,

$$[D(1,\lambda): D(2,\mu)]_q = q^{\frac{1}{2}(\lambda+\mu_1, \lambda-\mu)} \prod_{j=1}^n \begin{bmatrix} (\lambda-\mu, \omega_j) + (\mu_0, \alpha_j) \\ (\lambda-\mu, \omega_j) \end{bmatrix}_q$$

Rekha Biswal Max Planck Institute for MathMacdonald polynomials and level two Demazu

→ Ξ →

(1) $\sum_{k=0}^{\infty} [D(1, (m+2k)\omega) : D(3, m\omega)]_q x^k$ are known to be mock theta functions after specializing x to integer powers of q in the case $\mathfrak{g} = \mathfrak{sl}_2$. (2) $\sum_{\alpha \in \mathbb{R}^+} [D(1, \alpha) : D(2, 0)] X^{\alpha}$ are also cone theta functions. (3) Is there any connection of $\sum_{\mu \in \mathbb{P}^+} [D(1, \lambda) : D(m, \mu)] X^{\lambda-\mu}$ to mock modular forms for any m > 1?

- What is the combinatorial interpretation of the polynomials G_λ(z, q) and η^μ_λ(q)?
- Is there any geometric interpretation of the coefficients of powers of q in the polynomials [D(ℓ, λ) : D(m, μ)]_q for m ≥ ℓ?
- Is polynomial coming from the character of g[t]-modules M(λ, μ) related to some well-known polynomials now that we know them for the extreme cases either for λ = 0 or for μ = 0?

Reference:

- Rekha Biswal, Vyjayanthi Chari, Lisa Schneider, Sankaran Viswanath; "Demazure flags, Chebyshev polynomials, Partial and Mock Theta functions", arxiv: 1502.05322, (journal of Combinatorial Theory Series A).
- Rekha Biswal, Vyjayanthi Chari and Deniz Kus; "Demazure flags, q-Fibonacci polynomials and hypergeometric series" (Res. Math. Sci)
- Rekha Biswal, Vyjayanthi Chari, Peri Shereen and Jeffrey Wand;
 "Macdonald polynomials and level two Demazure modules for affine sl_{n+1}" (In preparation)
- Rekha Biswal and Deniz Kus; "A combinatorial formulae for graded multiplicities in excellent filtrations", (to appear in Transformation groups)

Thank you

・ロト ・四ト ・ヨト ・ヨト

- 2

20 / 20