The blocks of the periplectic Brauer algebra

Sigiswald Barbier

Joint work with:
Anton Cox and Maud De Visscher
City, University of London

Ghent University

Schur-Weyl duality

(n, n)-Brauer diagrams

n-northern nodes

(n, n)-Brauer diagrams

n-southern nodes

(n, n)-Brauer diagrams

Propagating lines

(n, n)-Brauer diagrams

Propagating lines, cups

(n, n)-Brauer diagrams

Propagating lines, cups and caps

(n, n)-Brauer diagrams

Only propagating lines \Rightarrow Symmetric group

The (periplectic) Brauer algebra

To multiply two Brauer diagrams:

The (periplectic) Brauer algebra

To multiply two Brauer diagrams:

The (periplectic) Brauer algebra

To multiply two Brauer diagrams:

Replace each closed loop by δ, $\delta=0$ for the periplectic case

The (periplectic) Brauer algebra

To multiply two Brauer diagrams:

Calculate the appropriate sign using certain rules.

Labelling of simple modules

Theorem

The Brauer algebra $B_{n}(\delta)$, with $\delta \neq 0$:

- The p-restricted partitions of $n, n-2, n-4, \ldots, 0$ (n even)
- The p-restricted partitions of $n, n-2, n-4, \ldots, 1$ (n odd)

A partition $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right)$ is p-restricted

if $\lambda_{i}-\lambda_{i+1}<p$ for all i.

Labelling of simple modules

Theorem

The Brauer algebra $B_{n}(\delta)$, with $\delta \neq 0$:

- The p-restricted partitions of $n, n-2, n-4, \ldots, 0$ (n even)
- The p-restricted partitions of $n, n-2, n-4, \ldots, 1$ (n odd)

A partition $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right)$ is p-restricted if $\lambda_{i}-\lambda_{i+1}<p$ for all i.

Labelling of simple modules

Theorem

The Brauer algebra $B_{n}(0)$:

- The p-restricted partitions of $n, n-2, n-4, \ldots, 2$ (n even)
- The p-restricted partitions of $n, n-2, n-4, \ldots, 1$ (n odd)

A partition $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right)$ is p-restricted if $\lambda_{i}-\lambda_{i+1}<p$ for all i.

Labelling of simple modules

Theorem (Kujawa-Tharp 2017)

The periplectic Brauer algebra A_{n} :

- The p-restricted partitions of $n, n-2, n-4, \ldots, 2$ (n even)
- The p-restricted partitions of $n, n-2, n-4, \ldots, 1$ (n odd)

A partition $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right)$ is p-restricted if $\lambda_{i}-\lambda_{i+1}<p$ for all i.

Blocks

$\lambda \sim \mu$ if there is a sequence

$$
\lambda=\lambda_{1}, \lambda_{2}, \ldots, \lambda_{t}=\mu
$$

with corresponding indecomposable A-modules

$$
M_{1}, M_{2}, \ldots M_{t-1}
$$

where $L\left(\lambda_{i}\right)$ and $L\left(\lambda_{i+1}\right)$ appear as composition factors of M_{i}.

Each equivalence class corresponds to a block of A.

Blocks

$\lambda \sim \mu$ if there is a sequence

$$
\lambda=\lambda_{1}, \lambda_{2}, \ldots, \lambda_{t}=\mu
$$

with corresponding indecomposable A-modules

$$
M_{1}, M_{2}, \ldots M_{t-1}
$$

where $L\left(\lambda_{i}\right)$ and $L\left(\lambda_{i+1}\right)$ appear as composition factors of M_{i}.

Each equivalence class corresponds to a block of A.

Blocks

Decomposition of A in indecomposable two-sided ideals:

$$
A=B_{1} \oplus B_{2} \oplus \cdots \oplus B_{k}
$$

each B_{i} is a block of A.

These blocks correspond also to a decomposition of the category of finite dimensional A-modules.

Blocks

Decomposition of A in indecomposable two-sided ideals:

$$
A=B_{1} \oplus B_{2} \oplus \cdots \oplus B_{k}
$$

each B_{i} is a block of A.

These blocks correspond also to a decomposition of the category of finite dimensional A-modules.

Blocks of the Brauer algebra

Theorem (Cox-De Visscher-Martin 2009)
The blocks of the Brauer algebra in characteristic zero correspond to orbits of the Weyl group of type D acting on partitions.

Theorem (King 2014)
The limiting hlocks of the Brauer algebra in positive characteristic corresponds to orbits of the affine Weyl group of type D acting on partitions.

Blocks of the Brauer algebra

Theorem (Cox-De Visscher-Martin 2009)

The blocks of the Brauer algebra in characteristic zero correspond to orbits of the Weyl group of type D acting on partitions.

Theorem (King 2014)

The limiting blocks of the Brauer algebra in positive characteristic corresponds to orbits of the affine Weyl group of type D acting on partitions.

Blocks of the periplectic Brauer algebra

Theorem (Coulembier 2018)
In characteristic zero, two partitions belong to the same block iff they have the same 2-core.

The 2-core: obtained by removing rim 2-hooks:

The possible 2-core:

Blocks of the periplectic Brauer algebra

Theorem (Coulembier 2018)

In characteristic zero, two partitions belong to the same block iff they have the same 2-core.

The 2-core: obtained by removing rim 2-hooks:

The possible 2-core:

Blocks of the periplectic Brauer algebra

Theorem (Coulembier 2018)

In characteristic zero, two partitions belong to the same block iff they have the same 2-core.

The 2-core: obtained by removing rim 2-hooks:

The possible 2-core:

$$
\rho_{0}=\varnothing, \quad \rho_{1}=\square,
$$

Blocks in characteristic p

Proposition
 If two partitions have the same 2-core, they belong to the same block.

Blocks in characteristic p

Proposition

If two partitions have the same 2-core, they belong to the same block.

Proposition

If two partitions of equal size have the same p-core, they belong to the same block.

Blocks in characteristic p

Consider the r-staircase partition ρ_{r} with

Then $\lambda \sim \rho_{r}$ if and only if the 2-core of λ is ρ_{r}.

Proposition

If λ has as 2-core ρ_{r} not satisfying these conditions, then

- $\lambda \sim \varnothing \quad$ (n even),
- $\lambda \sim \square \quad$ (n odd).

Blocks in characteristic p

Proposition

Consider the r-staircase partition ρ_{r} with

$$
2 r-1<p \quad \text { and } \quad \frac{r(r+1)}{2}+p-2 r>n
$$

Then $\lambda \sim \rho_{r}$ if and only if the 2-core of λ is ρ_{r}.

Proposition

If λ has as 2-core ρ_{r} not satisfying these conditions, then

- $\lambda \sim \varnothing \quad$ (n even),
- $\lambda \sim \square$
(n odd).

Blocks in characteristic p

Theorem
The block decomposition of A_{n} is given by

$$
B_{n}(\kappa) \oplus \bigoplus_{r} B_{n}\left(\rho_{r}\right)
$$

Here $\kappa=(\square)$ if n is odd or $\kappa=\emptyset$ if n is even.
The sum is over all $r \geq 2$ such that

- $\frac{r(r+1)}{2}+p-2 r>n$,
- $\frac{r(r+1)}{2}=n-2 k$.

In particular if $n \geq\left(p^{2}+7\right) / 8$, there is only one block.

Blocks in characteristic p

Theorem

The block decomposition of A_{n} is given by

$$
B_{n}(\kappa) \oplus \bigoplus_{r} B_{n}\left(\rho_{r}\right)
$$

Here $\kappa=(\square)$ if n is odd or $\kappa=\emptyset$ if n is even.
The sum is over all $r \geq 2$ such that

- $2 r-1<p$,
- $\frac{r(r+1)}{2}+p-2 r>n$,
- $\frac{r(r+1)}{2}=n-2 k$.

In particular if $n \geq\left(p^{2}+7\right) / 8$, there is only one block.

Blocks in characteristic p

Theorem

The block decomposition of A_{n} is given by

$$
B_{n}(\kappa) \oplus \bigoplus_{r} B_{n}\left(\rho_{r}\right)
$$

Here $\kappa=(\square)$ if n is odd or $\kappa=\emptyset$ if n is even.
The sum is over all $r \geq 2$ such that

- $2 r-1<p$,
- $\frac{r(r+1)}{2}+p-2 r>n$,
- $\frac{r(r+1)}{2}=n-2 k$.

In particular if $n \geq\left(p^{2}+7\right) / 8$, there is only one block.

$B G G$ reciprocity

Theorem

We have

$$
\left(P_{n}(\lambda): W_{n}(\mu)\right)=\left[W_{n}\left(\mu^{T}\right): L_{n}\left(\lambda^{M}\right)\right]
$$

where μ^{T} denotes the transpose of the partition μ and λ^{M} denotes the Mullineux conjugate of the partition λ.

