Differential geometry of orbit space of extended Jacobi group A_{n}

Guilherme Almeida
Advisor: Boris Dubrovin and Davide Guzzetti
SISSA, Trieste

August 15, 2019

Dubrovin-Frobenius Manifolds

A Dubrovin-Frobenius structure on the manifold M is the data ($\mathrm{M}, \bullet,<,>, \mathrm{e}, \mathrm{E}$) satisfying:
(1) $\eta:=<,>$ is a flat pseudo-Riemannian metric;
2. - is product of Frobenius algebra on $T_{m} M$ which depends smoothly on m;
3 e is the unity vector field for the product \bullet and $\nabla e=0$;
4 $\nabla_{w} c(x, y, z)$ is symmetric, where $c(x, y, z):=\langle x \bullet y, z\rangle$;
5 A linear vector field $E \in \Gamma(M)$ must be fixed on M, i.e. $\nabla \nabla E=0$ such that:

$$
\begin{aligned}
& L_{E}<,>=(2-d)<,> \\
& L_{E} \bullet=\bullet \\
& L_{E} e=e
\end{aligned}
$$

The function $F(t), t=\left(t^{1}, t^{2}, . ., t^{n}\right)$ is a solution of WDVV equation if its third derivatives

$$
\begin{equation*}
c_{\alpha \beta \gamma}=\frac{\partial^{3} F}{\partial t^{\alpha} \partial t^{\beta} \partial t^{\gamma}} \tag{1}
\end{equation*}
$$

satisfies the following conditions:
1

$$
\eta_{\alpha \beta}=c_{1 \alpha \beta}
$$

is constant nondegenerate matrix.
2 The function

$$
c_{\alpha \beta}^{\gamma}=\eta^{\gamma \delta} c_{\alpha \beta \delta}
$$

is structure constant of assosciative algebra.
(3) $F(t)$ must be quasihomogeneous function

$$
F\left(c^{d_{1}} t^{1}, . ., c^{d_{n}} t^{n}\right)=c^{d_{F}} F\left(t^{1}, . ., t^{n}\right)
$$

for any nonzero c and for some numbers $d_{1}, \ldots, d_{n}, d_{F}$.

Introduction

Theorem (Dubrovin 1992)
There is a one to one correspondence between a Dubrovin-Frobenius manifold and solutions of WDVV equation.

Intersection form and Monodromy

The intersection form is the bilinear pairing in $T^{*} M$ defined by:

$$
\left(\omega_{1}, \omega_{2}\right)^{*}:=\iota_{E}\left(\omega_{1} \bullet \omega_{2}\right)
$$

where $\omega_{1}, \omega_{2} \in T^{*} M$ and \bullet is the induced Frobenius algebra product in the cotangent space. Let us denote by g^{*} the intersection form.
The intersection form g of a Dubrovin-Frobenius manifold is a flat almost everywhere nondegenerate metric. Let us define:

$$
\Sigma=\{x \in M: \operatorname{det}(g)=0\}
$$

Hence, the linear system of differential equations determining g^{*}-flat coordinates has poles, and consequently its solutions $x_{a}\left(t^{1}, . ., t^{n}\right)$ are multivalued, where $\left(t^{1}, . ., t^{n}\right)$ are flat coordinates of η. The analytical continuation of the solutions $x_{a}\left(t^{1}, . ., t^{n}\right)$ has monodromy corresponding to loops around Σ. This gives rise to a monodromy representation of $\pi_{1}(M \backslash \Sigma)$, which is called Monodromy of the Dubrovin-Frobenius manifold,

Frobenius Manifolds as Ω / W

Theorem (Dubrovin Conjecture, Hertling 1999)
Any irreducible semisimple polynomial Dubrovin-Frobenius manifold with positive invariant degrees is isomorphic to the orbit space of a finite Coxeter group.

Main Point
Differential geometry of the orbit spaces of reflection groups and of their extensions \mapsto Dubrovin-Frobenius manifolds.

Example: W is Extended affine Weyl Group [Dubrovin, Zhang 1998] and for Jacobi groups [Bertola 1999].

Hurwitz space as Frobenius manifold

The Hurwitz space $H_{g, n_{0}, n_{1}, . ., n_{m}}$ is the moduli space of curves C_{g} of genus g endowed with $N=m+1+n_{0}+. . n_{m}$ branched covering λ of $\mathbb{C} P^{1}, \lambda: C_{g} \mapsto \mathbb{C} P^{1}$ with $m+1$ branching points over ∞ in $\mathbb{C} P^{1}$ of branching degree $n_{j}+1, j=0, . ., m$.

Examples of Hurwitz spaces

Example 1:
For $H_{0,1}$:
(1) $\lambda(p, v)=p^{2}-v^{2}$;
(2) Monodromy action: $v \mapsto-v$;
(3) $H_{0,1} \cong \mathbb{C} / A_{1}$.

Example 2:
For $H_{0,0,0}$:
(1) $\lambda(p, a, b)=p+\frac{a}{p-b}$;

2 Monodromy action: $\left(x_{1}, x_{2}\right) \mapsto\left(x_{1}+m,-x_{2}+n\right)$;
(3) $H_{0,0,0} \cong \mathbb{C}^{2} / \tilde{A_{1}}$.

For $H_{1,1}$:
(1) $\lambda\left(v, v_{0}, \phi, \tau\right)=e^{2 \pi i \phi} \frac{\theta_{1}\left(v-v_{0} \mid \tau\right) \theta_{1}\left(v+v_{0} \mid \tau\right)}{\theta_{1}^{2}(v \mid \tau)}$;

2 Monodromy action:
$3\left(\phi, v_{0}, \tau\right) \mapsto\left(\phi,-v_{0}, \tau\right)$
$4\left(\phi, v_{0}, \tau\right) \mapsto\left(\phi-n v_{0}-\frac{n^{2}}{2}, v_{0}+m+n \tau, \tau\right)$;
$5\left(\phi, v_{0}, \tau\right) \mapsto\left(\phi-\frac{c v_{0}^{2}}{c \tau+d}, \frac{v_{0}}{c \tau+d}, \frac{a \tau+b}{c \tau+d}\right)$;

$$
H_{1,1} \cong \mathbb{C}^{3} / \mathcal{J}\left(A_{1}\right)
$$

Problem Setting

$$
\begin{array}{ll}
H_{1,1} \cong \mathbb{C}^{3} / \mathcal{J}\left(A_{1}\right) & H_{0,0,0} \cong \mathbb{C}^{2} / \tilde{A}_{1} \\
\text { Example of Orbit space of Jacobi } & \text { Example of Orbit space of } \\
\text { Group } & \text { Extended Affine Weyl Group }
\end{array}
$$

Mixed of Extended Affine Weyl Group + Jacobi Group?

$$
H_{1,0,0} \cong \mathbb{C}^{4} / W
$$

Results

$$
\begin{array}{ccc}
H_{0,0,0} \cong \mathbb{C}^{2} / \tilde{A}_{1} & \longleftarrow & H_{0,1} \cong \mathbb{C} / A_{1} \\
\downarrow & \downarrow \\
H_{1,0,0} \cong \mathbb{C}^{4} / \mathcal{J}\left(\tilde{A}_{1}\right) & \longleftarrow & H_{1,1} \cong \mathbb{C}^{3} / \mathcal{J}\left(A_{1}\right)
\end{array}
$$

(1) $H_{0,1}, g=0,1$ double pole.
$2 H_{0,0,0}, g=0,2$ simple pole.
(3) $H_{1,1}, g=1,1$ double pole.
(4) $H_{1,0,0}, g=1,2$ simple pole.

Results

For $\left(\mathbb{C} \oplus \mathbb{C}^{2} \oplus \mathbb{H}\right) / \mathcal{J}\left(\tilde{A}_{1}\right)$
$\mathcal{J}\left(\tilde{A}_{1}\right) \curvearrowright \mathbb{C} \oplus \mathbb{C}^{2} \oplus \mathbb{H}$
$\left(\phi, v_{0}, v_{2}, \tau\right) \mapsto\left(\phi,-v_{0}+2 m_{0}, v_{2}+2 m_{2}, \tau\right)$
$\left(\phi, v_{0}, v_{2}, \tau\right) \mapsto$
$\left(\phi-2\left(n_{0} v_{0}-n_{2} v_{2}\right)+\left(n_{0}^{2}-n_{2}^{2}\right) \tau, v_{0}+m_{0}+n_{0} \tau, v_{2}+m_{2}+n_{2} \tau, \tau\right)$
$\left(\phi, v_{0}, v_{2}, \tau\right) \mapsto\left(\phi-\frac{c\left(v_{0}^{2}-v_{2}^{2}\right)}{c \tau+d}, \frac{v_{0}}{c \tau+d}, \frac{v_{2}}{c \tau+d}, \frac{a \tau+b}{c \tau+d}\right)$

$$
\begin{align*}
& {\left[\left(\phi, v_{0}, v_{2}, \tau\right)\right] \leftrightarrow e^{2 \pi i \phi} \frac{\theta_{1}\left(v-v_{0} \mid \tau\right) \theta_{1}\left(v+v_{0} \mid \tau\right)}{\theta_{1}\left(v-v_{2} \mid \tau\right) \theta_{1}\left(v+v_{2} \mid \tau\right)}} \tag{3}\\
& \quad=\varphi_{0}+\varphi_{1}\left[\zeta\left(v-v_{2} \mid \tau\right)-\zeta\left(v+v_{2} \mid \tau\right)+2 \zeta\left(v_{2} \mid \tau\right)\right]
\end{align*}
$$

The invariant functions of $\mathcal{J}\left(\tilde{A}_{1}\right)$ of weight k, and index m are functions on $\Omega=\mathbb{C} \oplus \mathbb{C}^{2} \oplus \mathbb{H} \ni\left(\phi, v_{0}, v_{2}, \tau\right)$ holomorphic on (v_{0}, ϕ, τ), and meromorphic on v_{2} which satisfy

$$
\begin{align*}
& E \varphi\left(\phi, v_{0}, v_{2}, \tau\right):=-\frac{1}{2 \pi i} \frac{\partial}{\partial \phi} \varphi\left(\phi, v_{0}, v_{2}, \tau\right)=m \varphi\left(\phi, v_{0}, v_{2}, \tau\right) \\
& \varphi\left(\phi, v_{0}, v_{2}, \tau\right)=\varphi\left(\phi,-v_{0}, v_{2}, \tau\right) \\
& \varphi\left(\phi, v_{0}, v_{2}, \tau\right)= \\
& \varphi\left(\phi-2 n_{0} v_{0}-n_{0}^{2} \tau+2 n_{2} v_{2}+n_{2}^{2} \tau, v_{0}+m_{0}+n_{0} \tau, v_{2}+m_{2}+n_{2} \tau, \tau\right) \\
& \varphi\left(\phi, v_{0}, v_{2}, \tau\right)=(c \tau+d)^{-k} \varphi\left(\phi-\frac{c\left(v_{0}^{2}-v_{2}^{2}\right)}{2(c \tau+d)}, \frac{v_{0}}{c \tau+d}, \frac{v_{2}}{c \tau+d}, \frac{a \tau+b}{c \tau+d}\right) \tag{4}
\end{align*}
$$

The space of Jacobi forms of weight k, and index m is denoted by $J_{k, m}^{\tilde{A}_{1}}$.

Results

For $H_{1,0,0}$:
(1) $d s^{2}=2 d v_{0}^{2}-2 d v_{2}^{2}+2 d \phi d \tau$
2. $e=\frac{\partial}{\partial \varphi_{0}}$;
(3) $E=\varphi_{0} \frac{\partial}{\partial \varphi_{0}}+\varphi_{1} \frac{\partial}{\partial \varphi_{1}}$;
(4) $L_{e} g^{*}=\eta^{*}$
$5\left(t^{1}, t^{2}, t^{3}, t^{4}\right)=\left(\varphi_{0}+2 \varphi_{1} \frac{\theta_{1}^{\prime}\left(v_{2} \mid \tau\right)}{\theta_{1}\left(v_{2} \mid \tau\right)}, \varphi_{1}, v_{2}, \tau\right)$
(6) $F^{\alpha \beta}=\eta^{\alpha \mu} \eta^{\beta \lambda} \frac{\partial^{2} F}{\partial t^{\mu} \partial t^{\lambda}}=\frac{g^{\alpha \beta}}{\operatorname{deg}\left(g^{\alpha \beta}\right)}$
(7) $F\left(t^{1}, t^{2}, t^{3}, t^{4}\right)=\frac{i\left(t^{1}\right)^{2} t^{4}}{4 \pi}-2 t^{1} t^{2} t^{3}+\left(t^{2}\right)^{2} \cdot \log \left(\frac{\pi \Theta_{1}^{\prime}\left(0 \mid t^{4}\right)}{t^{2} \Theta_{1}\left(2 w \mid t^{4}\right)}\right)$.

Results

$$
\begin{array}{cc}
H_{0, n-1,0} \cong \mathbb{C}^{n+1} / \tilde{A}_{n} \quad H_{0, n} \cong \mathbb{C}^{n} / A_{n} \\
& \downarrow \\
H_{1, n-1,0} \cong \mathbb{C}^{n+3} / \mathcal{J}\left(\tilde{A}_{n}\right) \longleftarrow & H_{1, n} \cong \mathbb{C}^{n+2} / \mathcal{J}\left(A_{n}\right)
\end{array}
$$

(1) $H_{0, n}, g=0,1$ pole of order n;
(2) $H_{0, n-1,0}, \mathrm{~g}=0,1$ simple pole, 1 pole of order $\mathrm{n}-1$;
(3) $H_{1, n}, g=1,1$ pole of order n;
(4) $H_{1, n-1,0}, g=1,1$ simple pole, 1 pole of order $\mathrm{n}-1$.

Thank you!

Sketch of the proof

Sketch of the construction for $\mathcal{J}\left(\tilde{A}_{n}\right)$:
$1^{\text {st }}$ Step: [Construction of the orbit space]
Consider the action $\mathcal{J}\left(\tilde{A}_{n}\right) \curvearrowright \Omega=\mathbb{C} \oplus \mathbb{C}^{n+1} \oplus \mathbb{H}$
Definition 1 (Jacobi group of \tilde{A}_{n})
The " Jacobi group of \tilde{A}_{n} " is represented on the Tits cone $\Omega=\mathbb{C} \oplus \mathbb{C}^{n+1} \oplus \mathbb{H}$ by the definition of the action $w \in \tilde{A}_{n}$, $t=(\lambda, \mu) \in(\mathbb{Z}+\tau \mathbb{Z})^{n+1}, \gamma \in S L_{2}(\mathbb{Z})$ as :
$1 w(\phi, v, \tau)=(\phi, w v, \tau)$
$2 t(\phi, v, \tau)=\left(\phi-<\mu, v>-\frac{1}{2}<\mu, \mu>\tau, v+\lambda+\tau \mu, \tau\right)$
$3 \gamma(\phi, v, \tau)=\left(\phi-\frac{c}{2(c \tau+d)}<v, v>\tau, \frac{v}{c \tau+d}, \frac{a \tau+b}{c \tau+d}\right)$

Sketch of the proof

Definition 2 (Jacobi forms)

The invariant functions of $\mathcal{J}\left(\tilde{A}_{n}\right)$ of weight k and index m are holomorphic functions on the Tits cone $\Omega=\mathbb{C} \oplus \mathbb{C}^{n} \oplus \mathbb{H}$, and meromorphic in the last variable v_{n+1} such that

$$
\begin{aligned}
& 1 E \varphi(\phi, v, \tau):=\frac{1}{2 \pi i} \frac{\partial}{\partial \phi} \varphi(\phi, v, \tau)=m \varphi(\phi, v, \tau) \\
& 2 \varphi(\phi, v, \tau)=\varphi(\phi, w v, \tau) \\
& 3 \varphi(\phi, v, \tau)=\varphi(\phi-<t, v>-\tau<t, t>, v+\lambda+t \tau, \tau) \\
& 4 \varphi(\phi, v, \tau)=(c \tau+d)^{-k} \varphi\left(\phi+c \frac{v v, v>}{2(c \tau+d)}, \frac{v}{c \tau+d}, \frac{a \tau+b}{c \tau+d}\right)
\end{aligned}
$$

and are locally bounded function on x as $\operatorname{Im}(\tau) \mapsto \infty$. I will denote the space of Jacobi form of \tilde{A}_{n} as $J_{\tilde{A}_{n}}$.

Theorem 3

The generators $\left(\varphi_{0}, \varphi_{1}, . ., \varphi_{n}\right)$ of the Algebra $J_{\tilde{A}_{n}}$ are given by the generating function:

$$
\begin{align*}
\lambda(v)= & e^{2 \pi i \phi} \frac{\prod_{i=0}^{n} \theta_{1}\left(v-v_{i} \mid \tau\right)}{\theta_{1}^{n}(v \mid \tau) \theta_{1}\left(v+(n+1) v_{n+1} \mid \tau\right)} \\
= & \varphi_{n} \wp(v \mid \tau)^{(n-2)}+\varphi_{n-1} \wp(v \mid \tau)^{(n-3)}+. .+\varphi_{2} \wp(v \mid \tau) \\
& +\varphi_{1}\left[\zeta(v \mid \tau)-\zeta\left(v+(n+1) v_{n+1}\right)+2 \zeta\left(\frac{n+1}{2} v_{n+1}\right)\right]+\varphi_{0} \tag{5}
\end{align*}
$$

Using the orbifold charts of $\Omega / \mathcal{J}\left(\tilde{A}_{n}\right)$, it is possible to prove that there is an unique bilinear form that transforms as a modular form of weight 2 under the action of $S L_{2}(\mathbb{Z})$, i.e under $\tau \mapsto \frac{a \tau+b}{c \tau+d}$, $d s^{2} \mapsto \frac{d s^{2}}{(c \tau+d)^{2}}$. This bilinear form is:

$$
\begin{equation*}
d s^{2}=d s_{\tilde{A}_{n}}^{2}+2 d \tilde{\phi} d \tau \tag{6}
\end{equation*}
$$

(1) The unit vector field and Euler vector field are given in terms of the invariants. Indeed:

$$
\begin{gather*}
e=\frac{\partial}{\partial \varphi_{0}} \tag{7}\\
E=\varphi_{0} \frac{\partial}{\partial \varphi_{0}}+\varphi_{1} \frac{\partial}{\partial \varphi_{1}}+\varphi_{2} \frac{\partial}{\partial \varphi_{2}}+. .+\varphi_{n} \frac{\partial}{\partial \varphi_{n}} \tag{8}
\end{gather*}
$$

2 The last step is just to prove that $\left(\Omega / \mathcal{J}\left(\tilde{A}_{n}\right), g, L_{e} g, e, E\right)$ has a flat pencil strcuture, and therefore, a Frobenius structure. To prove it, note that $\left(\Omega / \mathcal{J}\left(\tilde{A}_{n}\right), g, e, E\right)$ is isomorphic to $\left(H_{1, n-1,0}, g, e, E\right)$, therefore, $\left(\Omega / \mathcal{J}\left(\tilde{A}_{n}\right), g, L_{e} g, e, E\right)$ has a flat pencil structure because $\left(H_{1, n-1,0}, g, L_{e} g, e, E\right)$ has it.

Hurwitz space as Frobenius manifold

The covering space $\hat{H}_{g, n_{0}, n_{1}, ., n_{m}}$ is defined:

$$
\hat{H}_{g, n_{0}, n_{1}, . ., n_{m}}:=\left\{\left(C_{g}, \lambda, w_{0}, . ., w_{m},\left\{a_{1}, b_{1}, . . a_{g}, b_{g}\right\}\right)\right\}
$$

Locally in a neighbourhood of a covering of the described type, the set of branch points $\left\{\lambda_{1}, \ldots, \lambda_{n}\right\}$ gives coordinates on the Hurwitz space $\hat{H}_{g ; n_{0}, \ldots, n_{m}}$.
To build a frobenius structure on $\hat{H}_{g ; n_{0}, \ldots, n_{m}}$ take $\partial_{i}:=\frac{\partial}{\partial \lambda_{i}}$,
(1) the multiplication as $\partial_{i} \bullet \partial_{j}=\delta_{i j} \partial_{i}$,
(2) $e=\sum \partial_{i}$,
(3) $E=\sum \lambda^{i} \partial_{i}$,
(4) $\eta=\sum \operatorname{res}_{P_{i}} \frac{\phi^{2}}{d \lambda}\left(d \lambda^{i}\right)^{2}$,
where ϕ are the primary differential.

Formulas for g and η

$$
\begin{array}{r}
\left\langle\partial_{a}, \partial_{b}\right\rangle=-\sum_{|\lambda|<\infty} r \operatorname{res}_{d \lambda=0} \frac{\partial_{a}(\lambda(p) d p) \partial_{b}(\lambda(p) d p)}{d \lambda(p)} \\
\left(\partial_{a}, \partial_{b}\right)=-\sum_{|\lambda|<\infty} r \operatorname{res}_{d \lambda=0} \frac{\partial_{a}(\log \lambda(p) d p) \partial_{b}(\log \lambda(p) d p)}{d \log \lambda(p)} \\
c\left(\partial_{a}, \partial_{b}, \partial_{c}\right)=-\sum_{|\lambda|<\infty} r \operatorname{res}_{d \lambda=0} \frac{\partial_{a}(\lambda(p) d p) \partial_{b}(\lambda(p) d p) \partial_{c}(\lambda(p) d p)}{d \lambda(p)} \tag{11}
\end{array}
$$

Flat coordinates of η on Hurwitz space

Theorem (Dubrovin 1992)

The corresponding flat coordinates $t_{A}, A=1, \ldots, N$ consist of the five parts:

$$
\begin{array}{ll}
1 & t^{i ; \alpha}=r e s_{\infty_{i}} \lambda^{\frac{-1}{n_{i}+1}} p d \lambda \quad i=0, \ldots m, \quad \alpha=1, \ldots, n_{i} ; \\
2 & p^{i}=v . p \int_{\infty 0}^{\infty} d p \quad i=0, \ldots m ; \\
3 & q^{i}=r e s_{\infty i} \lambda d p \quad i=0, \ldots m ; \\
4 & \tau^{i}=\int_{b i} d p \quad i=1, \ldots g ; \\
5 & s^{i}=\int_{a i} \lambda d p \quad i=1, \ldots g .
\end{array}
$$

Formulas

$$
\begin{gather*}
\wp\left(z, \omega, \omega^{\prime}\right)=\frac{1}{z^{2}}+\sum_{m^{2}+n^{2} \neq 0} \frac{1}{\left(z+2 m \omega+2 n \omega^{\prime}\right)^{2}}+\frac{1}{\left(2 m \omega+2 n \omega^{\prime}\right)^{2}} \tag{12}\\
\frac{d \zeta}{d z}=-\wp \tag{13}\\
\frac{d \log \sigma}{d z}=\zeta \tag{14}\\
\eta=\zeta\left(\omega, \omega, \omega^{\prime}\right) \tag{15}\\
\Theta_{1}(v \mid \tau)=2 \sum_{n=0}^{\infty}(-1)^{n} \exp \left(i \pi\left(n+\frac{1}{2}\right)^{2} \tau\right) \sin ((2 n+1) \pi v) \tag{16}\\
\sigma\left(z, \omega, \omega^{\prime}\right)=2 \omega \frac{\Theta_{1}\left(\left.\frac{z}{2 \omega} \right\rvert\, \tau\right)}{\Theta_{1}^{\prime}(0 \mid \tau)} \exp \left(\frac{\eta z^{2}}{2 \omega}\right) \tag{17}
\end{gather*}
$$

