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Dubrovin-Frobenius Manifolds

A Dubrovin-Frobenius structure on the manifold M is the data
(M, •, <,> , e, E ) satisfying:

1 η:=<,> is a flat pseudo-Riemannian metric;

2 • is product of Frobenius algebra on TmM which depends
smoothly on m;

3 e is the unity vector field for the product • and ∇e = 0;

4 ∇wc(x , y , z) is symmetric, where c(x , y , z) :=< x • y , z > ;

5 A linear vector field E ∈ Γ(M) must be fixed on M, i.e.
∇∇E = 0 such that:

LE <,>= (2− d) <,>,

LE• = •,
LEe = e.



The function F (t), t = (t1, t2, .., tn) is a solution of WDVV
equation if its third derivatives

cαβγ =
∂3F

∂tα∂tβ∂tγ
(1)

satisfies the following conditions:

1

ηαβ = c1αβ

is constant nondegenerate matrix.

2 The function
cγαβ = ηγδcαβδ

is structure constant of assosciative algebra.

3 F(t) must be quasihomogeneous function

F (cd1t1, .., cdntn) = cdFF (t1, .., tn)

for any nonzero c and for some numbers d1, ..., dn, dF .



Introduction

Theorem (Dubrovin 1992)

There is a one to one correspondence between a
Dubrovin-Frobenius manifold and solutions of WDVV equation.



Intersection form and Monodromy
The intersection form is the bilinear pairing in T ∗M defined by:

(ω1, ω2)∗ := ιE (ω1 • ω2)

where ω1, ω2 ∈ T ∗M and • is the induced Frobenius algebra
product in the cotangent space. Let us denote by g∗ the
intersection form.
The intersection form g of a Dubrovin-Frobenius manifold is a flat
almost everywhere nondegenerate metric. Let us define:

Σ = {x ∈ M : det(g) = 0}

Hence, the linear system of differential equations determining
g∗-flat coordinates has poles, and consequently its solutions
xa(t1, .., tn) are multivalued, where (t1, .., tn) are flat coordinates
of η. The analytical continuation of the solutions xa(t1, .., tn) has
monodromy corresponding to loops around Σ. This gives rise to a
monodromy representation of π1(M \ Σ), which is called
Monodromy of the Dubrovin-Frobenius manifold.



Frobenius Manifolds as Ω/W

Theorem (Dubrovin Conjecture, Hertling 1999)

Any irreducible semisimple polynomial Dubrovin-Frobenius
manifold with positive invariant degrees is isomorphic to the orbit
space of a finite Coxeter group.

Main Point

Differential geometry of the orbit spaces of reflection groups and of
their extensions 7→ Dubrovin-Frobenius manifolds.

Example: W is Extended affine Weyl Group [Dubrovin, Zhang
1998] and for Jacobi groups [Bertola 1999].



Hurwitz space as Frobenius manifold

The Hurwitz space Hg ,n0,n1,..,nm is the moduli space of curves Cg of
genus g endowed with N = m + 1 + n0 + ..nm branched covering λ
of CP1, λ : Cg 7→ CP1 with m + 1 branching points over ∞ in
CP1 of branching degree nj + 1, j = 0, ..,m.



Examples of Hurwitz spaces

Example 1:
For H0,1:

1 λ(p, v) = p2 − v2;

2 Monodromy action: v 7→ −v ;

3 H0,1
∼= C/A1.

Example 2:
For H0,0,0 :

1 λ(p, a, b) = p + a
p−b ;

2 Monodromy action: (x1, x2) 7→ (x1 + m,−x2 + n);

3 H0,0,0
∼= C2/Ã1.



For H1,1:

1 λ(v , v0, φ, τ) = e2πiφ θ1(v−v0|τ)θ1(v+v0|τ)
θ2

1(v |τ)
;

2 Monodromy action:

3 (φ, v0, τ) 7→ (φ,−v0, τ)

4 (φ, v0, τ) 7→ (φ− nv0 − n2

2 , v0 + m + nτ, τ);

5 (φ, v0, τ) 7→ (φ− cv2
0

cτ+d ,
v0

cτ+d ,
aτ+b
cτ+d );

H1,1
∼= C3/J (A1).



Problem Setting

H1,1
∼= C3/J (A1)

Example of Orbit space of Jacobi
Group

H0,0,0
∼= C2/Ã1

Example of Orbit space of
Extended Affine Weyl Group

Mixed of Extended Affine Weyl Group + Jacobi Group?

H1,0,0
∼= C4/W



Results

H0,0,0
∼= C2/Ã1 ←−−−− H0,1

∼= C/A1y y
H1,0,0

∼= C4/J (Ã1) ←−−−− H1,1
∼= C3/J (A1)

1 H0,1, g=0, 1 double pole.

2 H0,0,0 ,g=0, 2 simple pole.

3 H1,1, g=1, 1 double pole.

4 H1,0,0, g=1, 2 simple pole.



Results

For (C⊕ C2 ⊕H)/J (Ã1)
J (Ã1) y C⊕ C2 ⊕H

(φ, v0, v2, τ) 7→ (φ,−v0 + 2m0, v2 + 2m2, τ)

(φ, v0, v2, τ) 7→
(φ− 2(n0v0 − n2v2) + (n2

0 − n2
2)τ, v0 + m0 + n0τ, v2 + m2 + n2τ, τ)

(φ, v0, v2, τ) 7→ (φ− c(v2
0 − v2

2 )

cτ + d
,

v0

cτ + d
,

v2

cτ + d
,
aτ + b

cτ + d
)

(2)

[(φ, v0, v2, τ)]↔ e2πiφ θ1(v − v0|τ)θ1(v + v0|τ)

θ1(v − v2|τ)θ1(v + v2|τ)

= ϕ0 + ϕ1[ζ(v − v2|τ)− ζ(v + v2|τ) + 2ζ(v2|τ)]

(3)



The invariant functions of J (Ã1) of weight k, and index m are
functions on Ω = C⊕ C2 ⊕H 3 (φ, v0, v2, τ) holomorphic on
(v0, φ, τ), and meromorphic on v2 which satisfy

Eϕ(φ, v0, v2, τ) := − 1

2πi

∂

∂φ
ϕ(φ, v0, v2, τ) = mϕ(φ, v0, v2, τ)

ϕ(φ, v0, v2, τ) = ϕ(φ,−v0, v2, τ)

ϕ(φ, v0, v2, τ) =

ϕ(φ− 2n0v0 − n2
0τ + 2n2v2 + n2

2τ, v0 + m0 + n0τ, v2 + m2 + n2τ, τ)

ϕ(φ, v0, v2, τ) = (cτ + d)−kϕ(φ− c(v2
0 − v2

2 )

2(cτ + d)
,

v0

cτ + d
,

v2

cτ + d
,
aτ + b

cτ + d
)

(4)

The space of Jacobi forms of weight k , and index m is denoted by

J Ã1
k,m.



Results

For H1,0,0:

1 ds2 = 2dv2
0 − 2dv2

2 + 2dφdτ

2 e = ∂
∂ϕ0

;

3 E = ϕ0
∂
∂ϕ0

+ ϕ1
∂
∂ϕ1

;

4 Leg
∗ = η∗

5 (t1, t2, t3, t4) = (ϕ0 + 2ϕ1
θ′1(v2|τ)
θ1(v2|τ) , ϕ1, v2, τ)

6 Fαβ = ηαµηβλ ∂2F
∂tµ∂tλ

= gαβ

deg(gαβ)

7 F (t1, t2, t3, t4) = i(t1)2t4

4π − 2t1t2t3 + (t2)2 · Log(
πΘ′1(0|t4)

t2Θ1(2w |t4)
).



Results

H0,n−1,0
∼= Cn+1/Ãn ←−−−− H0,n

∼= Cn/Any y
H1,n−1,0

∼= Cn+3/J (Ãn) ←−−−− H1,n
∼= Cn+2/J (An)

1 H0,n, g=0, 1 pole of order n;

2 H0,n−1,0 ,g=0, 1 simple pole, 1 pole of order n-1;

3 H1,n, g=1, 1 pole of order n;

4 H1,n−1,0, g=1, 1 simple pole, 1 pole of order n-1.



Thank you!



Sketch of the proof

Sketch of the construction for J (Ãn):
1st Step: [Construction of the orbit space ]
Consider the action J (Ãn) y Ω = C⊕ Cn+1 ⊕H

Definition 1 (Jacobi group of Ãn)

The ”Jacobi group of Ãn” is represented on the Tits cone
Ω = C⊕ Cn+1 ⊕H by the definition of the action w ∈ Ãn,
t = (λ, µ) ∈ (Z + τZ)n+1, γ ∈ SL2(Z) as :

1 w(φ, v , τ) = (φ,wv , τ)

2 t(φ, v , τ) = (φ− < µ, v > −1
2 < µ, µ > τ, v + λ+ τµ, τ)

3 γ(φ, v , τ) = (φ− c
2(cτ+d) < v , v > τ, v

cτ+d ,
aτ+b
cτ+d )



Sketch of the proof

Definition 2 (Jacobi forms)

The invariant functions of J (Ãn) of weight k and index m are
holomorphic functions on the Tits cone Ω = C⊕ Cn ⊕H, and
meromorphic in the last variable vn+1 such that

1 Eϕ(φ, v , τ) := 1
2πi

∂
∂φϕ(φ, v , τ) = mϕ(φ, v , τ)

2 ϕ(φ, v , τ) = ϕ(φ,wv , τ)

3 ϕ(φ, v , τ) = ϕ(φ− < t, v > −τ < t, t >, v + λ+ tτ, τ)

4 ϕ(φ, v , τ) = (cτ + d)−kϕ(φ+ c <v ,v>
2(cτ+d) ,

v
cτ+d ,

aτ+b
cτ+d )

and are locally bounded function on x as Im(τ) 7→ ∞. I will denote
the space of Jacobi form of Ãn as JÃn

.



Theorem 3

The generators (ϕ0, ϕ1, .., ϕn) of the Algebra JÃn
are given by the

generating function:

λ(v) =e2πiφ

∏n
i=0 θ1(v − vi |τ)

θn1(v |τ)θ1(v + (n + 1)vn+1|τ)

=ϕn℘(v |τ)(n−2) + ϕn−1℘(v |τ)(n−3) + ..+ ϕ2℘(v |τ)

+ ϕ1[ζ(v |τ)− ζ(v + (n + 1)vn+1) + 2ζ(
n + 1

2
vn+1)] + ϕ0

(5)



Using the orbifold charts of Ω/J (Ãn), it is possible to prove that
there is an unique bilinear form that transforms as a modular form
of weight 2 under the action of SL2(Z),i.e under τ 7→ aτ+b

cτ+d ,

ds2 7→ ds2

(cτ+d)2 . This bilinear form is:

ds2 = ds2
Ãn

+ 2d φ̃dτ (6)



1 The unit vector field and Euler vector field are given in terms
of the invariants. Indeed:

e =
∂

∂ϕ0
(7)

E = ϕ0
∂

∂ϕ0
+ ϕ1

∂

∂ϕ1
+ ϕ2

∂

∂ϕ2
+ ..+ ϕn

∂

∂ϕn
(8)

2 The last step is just to prove that (Ω/J (Ãn), g , Leg , e,E ) has
a flat pencil strcuture, and therefore, a Frobenius structure.
To prove it, note that (Ω/J (Ãn), g , e,E ) is isomorphic to
(H1,n−1,0, g , e,E ), therefore, (Ω/J (Ãn), g , Leg , e,E ) has a
flat pencil structure because (H1,n−1,0, g , Leg , e,E ) has it.



Hurwitz space as Frobenius manifold

The covering space Ĥg ,n0,n1,..,nm is defined:

Ĥg ,n0,n1,..,nm := {(Cg , λ,w0, ..,wm, {a1, b1, ..ag , bg})}

Locally in a neighbourhood of a covering of the described type, the
set of branch points {λ1, ..., λn} gives coordinates on the Hurwitz
space Ĥg ;n0,...,nm .
To build a frobenius structure on Ĥg ;n0,...,nm take ∂i := ∂

∂λi
,

1 the multiplication as ∂i • ∂j = δij∂i ,

2 e =
∑
∂i ,

3 E =
∑
λi∂i ,

4 η =
∑

resPi

φ2

dλ(dλi )2,

where φ are the primary differential.



Formulas for g and η

< ∂a, ∂b >= −
∑
|λ|<∞

resdλ=0
∂a(λ(p)dp)∂b(λ(p)dp)

dλ(p)
(9)

(∂a, ∂b) = −
∑
|λ|<∞

resdλ=0
∂a(Logλ(p)dp)∂b(Logλ(p)dp)

dLogλ(p)
(10)

c(∂a, ∂b, ∂c) = −
∑
|λ|<∞

resdλ=0
∂a(λ(p)dp)∂b(λ(p)dp)∂c(λ(p)dp)

dλ(p)

(11)



Flat coordinates of η on Hurwitz space

Theorem (Dubrovin 1992)

The corresponding flat coordinates tA,A = 1, ...,N consist of the
five parts:

1 t i ;α = res∞iλ
−1
ni+1 pdλ i=0,...m, α = 1, ..., ni ;

2 pi = v .p
∫∞i

∞0 dp i=0,...m;

3 qi = res∞iλdp i=0,...m;

4 τ i =
∫
bi dp i=1,...g;

5 s i =
∫
ai λdp i=1,...g.



Formulas

℘(z , ω, ω′) =
1

z2
+

∑
m2+n2 6=0

1

(z + 2mω + 2nω′)2
+

1

(2mω + 2nω′)2

(12)
dζ

dz
= −℘ (13)

dLogσ

dz
= ζ (14)

η = ζ(ω, ω, ω′) (15)

Θ1(v |τ) = 2
∞∑
n=0

(−1)nexp(iπ(n +
1

2
)2τ)sin((2n + 1)πv) (16)

σ(z , ω, ω′) = 2ω
Θ1( z

2ω |τ)

Θ′1(0|τ)
exp(

ηz2

2ω
) (17)
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