EQUIVALENCES OF (CO)MODULE ALGEBRA STRUCTURES OVER HOPF ALGEBRAS

Representation theory and integrable systems - ETH, Zurich

Joint work with Alexey Gordienko and Joost Vercruysse August 13, 2019

Ana Agore

Equivalences of (co)module algebra structure

Manin proved the existence of a universal coacting Hopf algebra aut(A) on an algebra A:

- Manin, Y.I. Quantum groups and non-commutative geometry, Centre de Recherches Mathématiques, Université de Montreal, 1988.
- Tambara, D. The coendomorphism bialgebra of an algebra. J. Fac. Sci. Univ. Tokyo Math. 37 (1990), 425–456.

Equivalent Gradings:

Equivalent Gradings:

Definition

We say that gradings $\Gamma : A = \bigoplus_{g \in G} A^{(g)}$ and $\Gamma' : A = \bigoplus_{g' \in G'} A^{(g')}$ on an algebra A, are equivalent, if there exists an automorphism $\psi : A \to A$ of algebras such that for any $g \in \text{supp } \Gamma^a$ there exists $g' \in G'$ such that $\psi(A^{(g)}) = A^{(g')}$.

Equivalent Gradings:

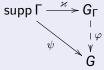
Definition

We say that gradings $\Gamma : A = \bigoplus_{g \in G} A^{(g)}$ and $\Gamma' : A = \bigoplus_{g' \in G'} A^{(g')}$ on an algebra A, are equivalent, if there exists an automorphism $\psi : A \to A$ of algebras such that for any $g \in \text{supp } \Gamma^a$ there exists $g' \in G'$ such that $\psi(A^{(g)}) = A^{(g')}$. If $\psi = \text{Id}_A$, we say that Γ and Γ' are realizations of the same grading on A as, respectively, a G- and a G'-grading (or that Γ can be regraded by G').

 ${}^{a}\mathsf{supp}\,\Gamma:=\{g\in G\mid A^{(g)}\neq 0\}$ is called the support of the grading

Definition

Let Γ be a group grading on an algebra A. Suppose that Γ admits a realization as a G_{Γ} -grading for some group G_{Γ} and denote by \varkappa the corresponding embedding supp $\Gamma \hookrightarrow G_{\Gamma}$. We say that (G_{Γ}, \varkappa) is the universal group of the grading Γ if for any realization of Γ as a grading by a group G with $\psi : \text{ supp } \Gamma \hookrightarrow G$ there exists a unique group homomorphism $\varphi : G_{\Gamma} \to G$ such that the following diagram is commutative:



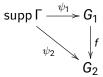
 (G_{Γ}, \varkappa) is the initial object of the category \mathcal{C}_{Γ} defined as follows:

 (G_{Γ}, \varkappa) is the initial object of the category \mathcal{C}_{Γ} defined as follows:

 The objects are all pairs (G, ψ) such that G is a group and Γ can be realized as a G-grading with ψ: supp Γ → G being the embedding of the support;

 (G_{Γ}, \varkappa) is the initial object of the category \mathcal{C}_{Γ} defined as follows:

- The objects are all pairs (G, ψ) such that G is a group and Γ can be realized as a G-grading with ψ: supp Γ → G being the embedding of the support;
- The morphisms between (G_1, ψ_1) and (G_2, ψ_2) are all group homomorphisms $f: G_1 \rightarrow G_2$ such that the diagram below is commutative:



Let *H* be a Hopf algebra.

Let *H* be a Hopf algebra. An algebra *A* is called a (right) *H*-comodule algebra if it admits a *H*-comodule structure $\rho: A \to A \otimes H$ which is an algebra homomorphism.

Let *H* be a Hopf algebra. An algebra *A* is called a (right) *H*-comodule algebra if it admits a *H*-comodule structure $\rho: A \to A \otimes H$ which is an algebra homomorphism.

The map ρ is called a comodule algebra structure on *A* and will be written in Sweedler notation as $\rho(a) = a_{(0)} \otimes a_{(1)}$, for all $a \in A$.

Let *H* be a Hopf algebra. An algebra *A* is called a (right) *H*-comodule algebra if it admits a *H*-comodule structure $\rho: A \to A \otimes H$ which is an algebra homomorphism.

The map ρ is called a comodule algebra structure on *A* and will be written in Sweedler notation as $\rho(a) = a_{(0)} \otimes a_{(1)}$, for all $a \in A$.

Any *H*-comodule algebra map $\rho: A \to A \otimes H$ gives rise to an algebra homomorphism $\zeta: H^* \to \operatorname{End}_F(A)$ defined by: $\zeta(h^*)a = h^*(a_{(1)})a_{(0)}$ for all $a \in A$ and $h^* \in H^*$.

Module algebras:

An algebra A is called a (left) *H*-module algebra if it admits a *H*-module structure such that:

$$h(ab) = (h_{(1)}a)(h_{(2)}b), \qquad h \mathbf{1}_A = \varepsilon(h) \mathbf{1}_A$$

for all $a, b \in A, h \in H$.

Module algebras:

An algebra A is called a (left) *H*-module algebra if it admits a *H*-module structure such that:

$$h(ab) = (h_{(1)}a)(h_{(2)}b), \qquad h \mathbf{1}_A = \varepsilon(h) \mathbf{1}_A$$

for all $a, b \in A, h \in H$.

We denote by ζ the homomorphism of algebras $H \to \text{End}_F(A)$ defined by $\zeta(h)a = ha$, for all $h \in H$ and $a \in A$, and we call it a module algebra structure on A.

• In what follows F is a field;

- In what follows F is a field;
- Alg_F (resp. Coalg_F) the category of (co)unital, (co)associative (co)algebras over F;

- In what follows F is a field;
- Alg_F (resp. Coalg_F) the category of (co)unital, (co)associative (co)algebras over F;
- Hopf_F the category of Hopf algebras;

- In what follows F is a field;
- Alg_F (resp. Coalg_F) the category of (co)unital, (co)associative (co)algebras over F;
- **Hopf**_{*F*} the category of Hopf algebras;
- Let $L: \operatorname{Coalg}_F \to \operatorname{Hopf}_F$ be the left adjoint for the forgetful functor $\operatorname{Hopf}_F \to \operatorname{Coalg}_F$ and we denote by $\eta: \operatorname{id}_{\operatorname{Coalg}_F} \Rightarrow L$ the unit of this adjunction;

- In what follows F is a field;
- Alg_F (resp. Coalg_F) the category of (co)unital, (co)associative (co)algebras over F;
- **Hopf**_{*F*} the category of Hopf algebras;
- Let $L: \operatorname{Coalg}_F \to \operatorname{Hopf}_F$ be the left adjoint for the forgetful functor $\operatorname{Hopf}_F \to \operatorname{Coalg}_F$ and we denote by $\eta: \operatorname{id}_{\operatorname{Coalg}_F} \Rightarrow L$ the unit of this adjunction;
- Let $R: Alg_F \to Hopf_F$ be the right adjoint for the forgetful functor $Hopf_F \to Alg_F$.

- In what follows F is a field;
- Alg_F (resp. Coalg_F) the category of (co)unital, (co)associative (co)algebras over F;
- **Hopf**_{*F*} the category of Hopf algebras;
- Let $L: \operatorname{Coalg}_F \to \operatorname{Hopf}_F$ be the left adjoint for the forgetful functor $\operatorname{Hopf}_F \to \operatorname{Coalg}_F$ and we denote by $\eta: \operatorname{id}_{\operatorname{Coalg}_F} \Rightarrow L$ the unit of this adjunction;
- Let $R: \operatorname{Alg}_F \to \operatorname{Hopf}_F$ be the right adjoint for the forgetful functor $\operatorname{Hopf}_F \to \operatorname{Alg}_F$. The counit of this adjunction will be denoted by $\mu: R \Rightarrow \operatorname{id}_{\operatorname{Alg}_F}$.

SUPPORT EQUIVALENCE OF COMODULE STRUCTURES

Definition

Let A be an algebra, H_i Hopf algebras, i = 1, 2 and assume there exists an H_i -comodule algebra structure on A.

SUPPORT EQUIVALENCE OF COMODULE STRUCTURES

Definition

Let *A* be an algebra, H_i Hopf algebras, i = 1, 2 and assume there exists an H_i -comodule algebra structure on *A*. The two comodule algebra structures on *A* are called *support equivalent* if

$$\zeta_1(H_1^*) = \zeta_2(H_2^*)$$

where ζ_i is the algebra homomorphism $H_i^* \to \text{End}_F(A_i)$ induced by the comodule algebra structure on *A*.

Let *A* be an *H*-comodule algebra via $\rho: A \to A \otimes H$ and the corresponding homomorphism of algebras $\zeta: H^* \to \text{End}_F(A)$.

EQUIVALENCE OF COMODULE ALGEBRA STRUCTURES

Let *A* be an *H*-comodule algebra via $\rho: A \to A \otimes H$ and the corresponding homomorphism of algebras $\zeta: H^* \to \text{End}_F(A)$.

Choose a basis $(a_{\alpha})_{\alpha}$ in A and let $\rho(a_{\alpha}) = \sum_{\beta} a_{\beta} \otimes h_{\beta\alpha}$ where $h_{\beta\alpha} \in H$.

EQUIVALENCE OF COMODULE ALGEBRA STRUCTURES

Let *A* be an *H*-comodule algebra via $\rho: A \to A \otimes H$ and the corresponding homomorphism of algebras $\zeta: H^* \to \text{End}_F(A)$.

Choose a basis $(a_{\alpha})_{\alpha}$ in A and let $\rho(a_{\alpha}) = \sum_{\beta} a_{\beta} \otimes h_{\beta\alpha}$ where $h_{\beta\alpha} \in H$.

Let $C(\rho)$ be the *F*-linear span of all such $h_{\alpha\beta}$;

EQUIVALENCE OF COMODULE ALGEBRA STRUCTURES

Let *A* be an *H*-comodule algebra via $\rho: A \to A \otimes H$ and the corresponding homomorphism of algebras $\zeta: H^* \to \operatorname{End}_F(A)$.

Choose a basis $(a_{\alpha})_{\alpha}$ in A and let $\rho(a_{\alpha}) = \sum_{\beta} a_{\beta} \otimes h_{\beta\alpha}$ where $h_{\beta\alpha} \in H$.

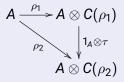
Let $C(\rho)$ be the *F*-linear span of all such $h_{\alpha\beta}$; $C(\rho)$ is a subcoalgebra of *H*:

$$\Delta(h_{lphaeta}) = \sum_{\gamma} h_{lpha\gamma} \otimes h_{\gammaeta}, \qquad arepsilon(h_{lphaeta}) = \delta_{lpha,eta} ext{ for all } lpha,eta.$$

EQUIVALENCE OF COMODULE STRUCTURES

Proposition

Let A be an H_i-comodule algebra for Hopf algebras H_i, i = 1, 2. Then the two comodule algebra structures on A are equivalent if and only if there exists an isomorphism of coalgebras $\tau : C(\rho_1) \xrightarrow{\rightarrow} C(\rho_2)$ such that the following diagram is commutative:



Construction:

• Let $\rho: A \to A \otimes H$ be a *H*-comodule algebra structure on *A*;

- Let $\rho: A \to A \otimes H$ be a *H*-comodule algebra structure on *A*;
- Choose a basis $(a_{\alpha})_{\alpha}$ in A and $h_{\alpha\beta}$ such that $\rho(a_{\alpha}) = \sum_{\beta} a_{\beta} \otimes h_{\beta\alpha}$ and $C(\rho)$ the *F*-linear span of all such $h_{\alpha\beta}$;

- Let $\rho: A \to A \otimes H$ be a *H*-comodule algebra structure on *A*;
- Choose a basis $(a_{\alpha})_{\alpha}$ in A and $h_{\alpha\beta}$ such that $\rho(a_{\alpha}) = \sum_{\beta} a_{\beta} \otimes h_{\beta\alpha}$ and $C(\rho)$ the *F*-linear span of all such $h_{\alpha\beta}$;
- A remains a $C(\rho)$ -comodule and therefore a $L(C(\rho))$ -comodule.

Construction:

• Let $a_{\alpha}a_{\beta} = \sum_{\gamma} k_{\alpha\beta}^{\gamma}a_{\gamma}$ for some structure constants $k_{\alpha\beta}^{\gamma} \in F$ and denote by I_0 the ideal of $L(C(\rho))$ generated by:

$$\sum_{r,q} k_{rq}^{\gamma} \eta_{\mathcal{C}(\rho_0)}(h_{r\alpha}) \eta_{\mathcal{C}(\rho_0)}(h_{q\beta}) - \sum_{u} k_{\alpha\beta}^{u} \eta_{\mathcal{C}(\rho_0)}(h_{\gamma u})$$

for all possible choices of indices α, β, γ ;

Construction:

• Let $a_{\alpha}a_{\beta} = \sum_{\gamma} k_{\alpha\beta}^{\gamma}a_{\gamma}$ for some structure constants $k_{\alpha\beta}^{\gamma} \in F$ and denote by I_0 the ideal of $L(C(\rho))$ generated by:

$$\sum_{r,q} k_{rq}^{\gamma} \eta_{\mathcal{C}(\rho_0)}(h_{r\alpha}) \eta_{\mathcal{C}(\rho_0)}(h_{q\beta}) - \sum_{u} k_{\alpha\beta}^{u} \eta_{\mathcal{C}(\rho_0)}(h_{\gamma u})$$

for all possible choices of indices α, β, γ ;

• I_0 is a coideal.

Construction:

Let *I* be the ideal generated by spaces Sⁿ(I₀) for all n ∈ Z₊ where S is the antipode of L(C(ρ)).

Construction:

Let *I* be the ideal generated by spaces Sⁿ(I₀) for all n ∈ Z₊ where S is the antipode of L(C(ρ)). Obviously, *I* is a Hopf ideal and H^ρ := L(C(ρ))/I is a Hopf algebra;

Construction:

- Let *I* be the ideal generated by spaces Sⁿ(I₀) for all n ∈ Z₊ where S is the antipode of L(C(ρ)). Obviously, *I* is a Hopf ideal and H^ρ := L(C(ρ))/I is a Hopf algebra;
- Denote by $\bar{\eta}: C(\rho) \to L(C(\rho))/I$ the map induced by $\eta_{C(\rho)}$ and define an H^{ρ} -comodule algebra structure \varkappa^{ρ} on A by $\varkappa^{\rho}(a_{\alpha}) := \sum_{\beta} a_{\beta} \otimes \bar{\eta}(h_{\beta\alpha});$

Construction:

- Let *I* be the ideal generated by spaces Sⁿ(I₀) for all n ∈ Z₊ where S is the antipode of L(C(ρ)). Obviously, *I* is a Hopf ideal and H^ρ := L(C(ρ))/I is a Hopf algebra;
- Denote by $\bar{\eta}: C(\rho) \to L(C(\rho))/I$ the map induced by $\eta_{C(\rho)}$ and define an H^{ρ} -comodule algebra structure \varkappa^{ρ} on A by $\varkappa^{\rho}(a_{\alpha}) := \sum_{\beta} a_{\beta} \otimes \bar{\eta}(h_{\beta\alpha});$
- We call the pair $(H^{\rho}, \varkappa^{\rho})$ the universal Hopf algebra of ρ .

Consider the category C_A^H defined as follows:

Consider the category C_A^H defined as follows:

• The objects are H_1 -comodule algebra structures on the algebra A equivalent to the given comodule algebra structure (H, ρ)

Consider the category C_A^H defined as follows:

The objects are H₁-comodule algebra structures on the algebra A equivalent to the given comodule algebra structure (H, ρ) (i.e. H₁-comodule algebra structures on A such that ζ₁(H₁^{*}) = ζ(H^{*}));

Consider the category C_A^H defined as follows:

- The objects are H_1 -comodule algebra structures on the algebra A equivalent to the given comodule algebra structure (H, ρ) (i.e. H_1 -comodule algebra structures on A such that $\zeta_1(H_1^*) = \zeta(H^*)$);
- 2 The morphisms from an H_1 -comodule algebra structure on A to an H_2 -comodule algebra structure are all Hopf algebra homomorphisms $\tau: H_1 \rightarrow H_2$ such that the following diagram is commutative:

$$\operatorname{End}_{F}(A) \xleftarrow{\zeta_{2}} H_{2}^{*}$$

$$\downarrow^{\tau^{*}}_{\zeta_{1}} \qquad \downarrow^{\tau^{*}}_{H_{1}^{*}}$$

Theorem

The pair $(H^{\rho}, \varkappa^{\rho})$ is the initial object of the category C_{A}^{H} .

Connection to the universal group of a grading:

Connection to the universal group of a grading:

Theorem

Let $\Gamma: A = \bigoplus_{g \in G} A^{(g)}$ be a grading on an algebra A by a group G and consider $\rho: A \to A \otimes FG$ the corresponding comodule algebra map. If G_{Γ} is the universal group of Γ and $\rho_{\Gamma}: A \to A \otimes FG_{\Gamma}$ the corresponding comodule algebra map, then $(FG_{\Gamma}, \rho_{\Gamma})$ is the universal Hopf algebra of the comodule algebra structure ρ .

Connection to the universal group of a grading:

Theorem

Let $\Gamma: A = \bigoplus_{g \in G} A^{(g)}$ be a grading on an algebra A by a group G and consider $\rho: A \to A \otimes FG$ the corresponding comodule algebra map. If G_{Γ} is the universal group of Γ and $\rho_{\Gamma}: A \to A \otimes FG_{\Gamma}$ the corresponding comodule algebra map, then $(FG_{\Gamma}, \rho_{\Gamma})$ is the universal Hopf algebra of the comodule algebra structure ρ .

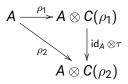
Given an algebra A, we define the category C_A as follows:

Given an algebra A, we define the category C_A as follows:

• The objects are pairs (H, ρ) where *H* is a Hopf algebra and $\rho: A \rightarrow A \otimes H$ is a right *H*-comodule algebra structure on *A*;

Given an algebra A, we define the category C_A as follows:

- The objects are pairs (H, ρ) where *H* is a Hopf algebra and $\rho: A \rightarrow A \otimes H$ is a right *H*-comodule algebra structure on *A*;
- 2 The morphisms between two objects (H_1, ρ_1) and (H_2, ρ_2) are coalgebra homomorphisms $\tau : C(\rho_1) \to C(\rho_2)$ such that the following diagram is commutative:



Any morphism $\tau: (H_1, \rho_1) \to (H_2, \rho_2)$ in \mathcal{C}_A induces a Hopf algebra homomorphism $\overline{\tau}$ between the corresponding universal Hopf algebras H^{ρ_1} and H^{ρ_2} , respectively.

Any morphism $\tau: (H_1, \rho_1) \to (H_2, \rho_2)$ in \mathcal{C}_A induces a Hopf algebra homomorphism $\overline{\tau}$ between the corresponding universal Hopf algebras H^{ρ_1} and H^{ρ_2} , respectively.

Theorem

There exists a functor $F : C_A \to \mathbf{Hopf}_F$ given as follows:

 $F(H, \rho) = H^{\rho}$ and $F(\tau) = \overline{\tau}$.

Hopf-Galois extensions:

Hopf-Galois extensions: Let $\rho: A \to A \otimes H$ be a comodule algebra structure on A and $A^{coH} := \{a \in A \mid \rho(a) = a \otimes 1_H\}.$

Hopf-Galois extensions: Let $\rho: A \to A \otimes H$ be a comodule algebra structure on A and $A^{coH} := \{a \in A \mid \rho(a) = a \otimes 1_H\}$. A is called a *Hopf–Galois extension* of A^{coH} if the linear map can: $A \otimes_{A^{coH}} A \to A \otimes H$ defined below is bijective:

 $can(a \otimes b) := ab_{(0)} \otimes b_{(1)}.$

Hopf-Galois extensions: Let $\rho: A \to A \otimes H$ be a comodule algebra structure on A and $A^{coH} := \{a \in A \mid \rho(a) = a \otimes 1_H\}$. A is called a *Hopf–Galois extension* of A^{coH} if the linear map can: $A \otimes_{A^{coH}} A \to A \otimes H$ defined below is bijective:

$$\operatorname{can}(a \otimes b) := ab_{(0)} \otimes b_{(1)}.$$

Theorem

If A/A^{coH} is a Hopf–Galois extension then (H, ρ) is the universal Hopf algebra of ρ .

Corollary

Let H be a Hopf algebra. Then the universal Hopf algebra of the H-comodule algebra structure on H defined by the comultiplication $\Delta: H \to H \otimes H$ is again (H, Δ) .

Example

Let *H* be a Hopf algebra and *A* an *H*-module algebra. We denote by A#H the corresponding *smash product*,

Example

Let *H* be a Hopf algebra and *A* an *H*-module algebra. We denote by A#H the corresponding *smash product*, i.e. $A#H = A \otimes H$ as a vector space with multiplication given as follows:

$$(a\#h)(b\#g) = a(h_{(1)} \cdot b)\#h_{(2)}g$$

where we denote the element $a \otimes h \in A \otimes H$ by a # h. We have an *H*-comodule algebra structure on A#H given by:

$$\rho: A \# H \to (A \# H) \otimes H, \ \rho(a \# h) = a \# h_{(1)} \otimes h_{(2)}$$

Example

Let *H* be a Hopf algebra and *A* an *H*-module algebra. We denote by A#H the corresponding *smash product*, i.e. $A#H = A \otimes H$ as a vector space with multiplication given as follows:

$$(a\#h)(b\#g) = a(h_{(1)} \cdot b)\#h_{(2)}g$$

where we denote the element $a \otimes h \in A \otimes H$ by a # h. We have an *H*-comodule algebra structure on A#H given by:

 $\rho: A \# H \to (A \# H) \otimes H, \ \rho(a \# h) = a \# h_{(1)} \otimes h_{(2)}$

The universal Hopf algebra of ρ is $(H, id_A \otimes \Delta)$.

Definition

Let A be an algebra, H_i Hopf algebras, i = 1, 2 and assume there exists an H_i -module algebra structure on A.

Definition

Let *A* be an algebra, H_i Hopf algebras, i = 1, 2 and assume there exists an H_i -module algebra structure on *A*. The two module algebra structures on *A* are called *equivalent* if

$$\zeta_1(H_1) = \zeta_2(H_2)$$

where ζ_i is the module algebra structure on A.

Proposition

Let $\rho_i \colon A \to A \otimes H_i$, i = 1, 2, be two comodule algebra structures on an algebra A where H_i are finite dimensional Hopf algebras and denote by $\zeta_i \colon H_i^* \to \text{End}_F(A)$ the corresponding homomorphisms of algebras.

Proposition

Let $\rho_i \colon A \to A \otimes H_i$, i = 1, 2, be two comodule algebra structures on an algebra A where H_i are finite dimensional Hopf algebras and denote by $\zeta_i \colon H_i^* \to \operatorname{End}_F(A)$ the corresponding homomorphisms of algebras. Then ρ_1 and ρ_2 are equivalent comodule algebra structures if and only if ζ_1 and ζ_2 are equivalent module algebra structures.

Let G be an affine algebraic group over an algebraically closed field F.

Let G be an affine algebraic group over an algebraically closed field F.

Then $\mathcal{O}(G)$ the algebra of regular functions on G is a Hopf algebra.

Let G be an affine algebraic group over an algebraically closed field F.

Then $\mathcal{O}(G)$ the algebra of regular functions on G is a Hopf algebra.

Suppose *G* is acting *rationally* by automorphisms on a finite dimensional algebra *A*,

Let G be an affine algebraic group over an algebraically closed field F.

Then $\mathcal{O}(G)$ the algebra of regular functions on G is a Hopf algebra.

Suppose *G* is acting *rationally* by automorphisms on a finite dimensional algebra *A*, i.e. for a given basis a_1, \ldots, a_n in *A* there exist $\omega_{ij} \in \mathcal{O}(G)$, where $1 \leq i, j \leq n$, such that $ga_j = \sum_{i=1}^n \omega_{ij}(g)a_i$ for all $1 \leq j \leq n$ and $g \in G$.

Let G be an affine algebraic group over an algebraically closed field F.

Then $\mathcal{O}(G)$ the algebra of regular functions on G is a Hopf algebra.

Suppose *G* is acting *rationally* by automorphisms on a finite dimensional algebra *A*, i.e. for a given basis a_1, \ldots, a_n in *A* there exist $\omega_{ij} \in \mathcal{O}(G)$, where $1 \leq i, j \leq n$, such that $ga_j = \sum_{i=1}^n \omega_{ij}(g)a_i$ for all $1 \leq j \leq n$ and $g \in G$.

• A is an $\mathcal{O}(G)$ -comodule algebra where: $\rho(a_j) := \sum_{i=1}^n a_i \otimes \omega_{ij}$ for $1 \leq j \leq n$.

Let G be an affine algebraic group over an algebraically closed field F.

Then $\mathcal{O}(G)$ the algebra of regular functions on G is a Hopf algebra.

Suppose *G* is acting *rationally* by automorphisms on a finite dimensional algebra *A*, i.e. for a given basis a_1, \ldots, a_n in *A* there exist $\omega_{ij} \in \mathcal{O}(G)$, where $1 \leq i, j \leq n$, such that $ga_j = \sum_{i=1}^n \omega_{ij}(g)a_i$ for all $1 \leq j \leq n$ and $g \in G$.

• A is an $\mathcal{O}(G)$ -comodule algebra where: $\rho(a_j) := \sum_{i=1}^n a_i \otimes \omega_{ij}$ for $1 \leq j \leq n$.

2 A is an $\mathcal{O}(G)^{\circ}$ -module algebra: $f^*a_j = \sum_{i=1}^n f^*(\omega_{ij})a_i$ for all $1 \leq j \leq n$ and $f^* \in O(G)^{\circ}$. The Lie algebra g of G is the subspace consisting of all *primitive* elements of O(G)°, i.e. f* ∈ O(G)° such that Δ(f*) = f* ⊗ 1 + 1 ⊗ f*, and the g-action on A by derivations is just the restriction of the O(G)°-action

- The Lie algebra g of G is the subspace consisting of all *primitive* elements of O(G)°, i.e. f* ∈ O(G)° such that Δ(f*) = f* ⊗ 1 + 1 ⊗ f*, and the g-action on A by derivations is just the restriction of the O(G)°-action
- 2 The group *G* itself can be identified with the group of *group-like* elements of $\mathcal{O}(G)^{\circ}$, i.e. $f^* \in \mathcal{O}(G)^{\circ}$ such that $\Delta(f^*) = f^* \otimes f^*$.

RATIONAL ACTIONS OF AFFINE ALGEBRAIC GROUPS

Three Hopf algebras are acting on A: $\mathcal{O}(G)^{\circ}$, FG and $U(\mathfrak{g})$.

RATIONAL ACTIONS OF AFFINE ALGEBRAIC GROUPS

Three Hopf algebras are acting on A: $\mathcal{O}(G)^{\circ}$, FG and $U(\mathfrak{g})$.

Theorem

Let G be a connected affine algebraic group over an algebraically closed field F of characteristic 0 acting rationally by automorphisms on a finite dimensional algebra A. Let \mathfrak{g} be the Lie algebra of G. Then the corresponding FG-action, $U(\mathfrak{g})$ -action and $\mathcal{O}(G)^\circ$ -action on A are equivalent.

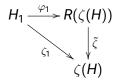
Construction:

Construction:

• Let $\zeta: H \to End_F(A)$ be an *H*-module algebra on *A* ;

Construction:

- Let $\zeta: H \to End_F(A)$ be an *H*-module algebra on *A*;
- For any H₁-module algebra ζ₁: H₁ → End_F(A) on A that is equivalent to ζ there exists a unique Hopf algebra homomorphism φ₁: H₁ → R(ζ(H)) such that the following diagram commutes:



where we denote $\tilde{\zeta} = \mu_{\zeta(H)}$.

Construction:

Construction:

Consider the subalgebra H_ζ of R(ζ(H)) generated by φ₁(H₁) for all such structures ζ₁;

Construction:

- Consider the subalgebra H_ζ of R(ζ(H)) generated by φ₁(H₁) for all such structures ζ₁;
- H_{ζ} is a Hopf algebra and $\psi_{\zeta} := \tilde{\zeta}|_{H_{\zeta}}$ defines a H_{ζ} -module algebra structure on A;

Construction:

- Consider the subalgebra H_ζ of R(ζ(H)) generated by φ₁(H₁) for all such structures ζ₁;
- H_{ζ} is a Hopf algebra and $\psi_{\zeta} := \tilde{\zeta}|_{H_{\zeta}}$ defines a H_{ζ} -module algebra structure on A;
- We call $(H_{\zeta}, \psi_{\zeta})$ the *universal Hopf algebra* of ζ .

Consider the category $_{HCA}$ defined as follows:

Consider the category $_{HCA}$ defined as follows:

The objects are H₁-module algebra structures on the algebra A equivalent to the given module algebra structure

Consider the category $_{HCA}$ defined as follows:

• The objects are H_1 -module algebra structures on the algebra A equivalent to the given module algebra structure (i.e. H_1 -module algebra structures on A such that $\zeta_1(H_1) = \zeta(H)$);

Consider the category $_{H}C_{A}$ defined as follows:

- The objects are H_1 -module algebra structures on the algebra A equivalent to the given module algebra structure (i.e. H_1 -module algebra structures on A such that $\zeta_1(H_1) = \zeta(H)$);
- 2 The morphisms from an H_1 -module algebra structure on A to an H_2 -module algebra structure are all Hopf algebra homomorphisms $\tau: H_1 \rightarrow H_2$ such that the following diagram is commutative:

$$\mathsf{End}_{\mathsf{F}}(\mathsf{A}) \xleftarrow{\zeta_1} H_1$$

$$\downarrow^{\tau}$$

$$H_2$$

Theorem

The pair $(H_{\zeta}, \psi_{\zeta})$ is the final object of the category $_{H}C_{A}$.

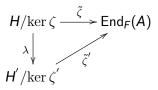
Given an algebra A, we define the category $_{A}C$ as follows:

Given an algebra A, we define the category $_{A}C$ as follows:

• The objects are pairs (H, ζ) where *H* is a Hopf algebra and $\zeta: H \to \text{End}_F(A)$ is a left *H*-module algebra structure on *A*;

Given an algebra A, we define the category $_{A}C$ as follows:

- The objects are pairs (H, ζ) where *H* is a Hopf algebra and $\zeta: H \to \text{End}_F(A)$ is a left *H*-module algebra structure on *A*;
- 2 The morphisms between two objects (*H*, ζ) and (*H*['], ζ[']) are algebra homomorphisms λ : *H*/ker ζ → *H*[']/ker ζ['] such that the following diagram is commutative:



where $\tilde{\zeta} : H/\ker \zeta \to \operatorname{End}_F(A)$ (resp. $\tilde{\zeta}' : H'/\ker \zeta' \to \operatorname{End}_F(A)$) are induced by ζ (resp. ζ')), i.e. $\tilde{\zeta}(\tilde{x}) = \zeta(x)$ for all $\tilde{x} \in H/\ker \zeta$.

• Any morphism $\lambda : H/\ker \zeta \to H'/\ker \zeta'$ in ${}_{\mathcal{A}}\mathcal{C}$ induces a Hopf algebra homomorphism $\overline{\lambda}$ between $R(\zeta(H))$ and $R(\zeta'(H'))$, respectively;

• Any morphism $\lambda : H/\ker \zeta \to H'/\ker \zeta'$ in $_{\mathcal{A}}C$ induces a Hopf algebra homomorphism $\overline{\lambda}$ between $R(\zeta(H))$ and $R(\zeta'(H'))$, respectively;

$$\mathbf{2} \ \overline{\lambda}_{|H_{\zeta}} \subseteq H_{\zeta'}'.$$

• Any morphism $\lambda : H/\ker \zeta \to H'/\ker \zeta'$ in ${}_{\mathcal{A}}\mathcal{C}$ induces a Hopf algebra homomorphism $\overline{\lambda}$ between $R(\zeta(H))$ and $R(\zeta'(H'))$, respectively;

$$\mathbf{2} \ \overline{\lambda}_{|H_{\zeta}} \subseteq H_{\zeta'}'.$$

Theorem

There exists a functor $G: {}_{\mathcal{A}}\mathcal{C} \to \mathbf{Hopf}_{F}$ given as follows:

$$G(H, \zeta) = H_{\zeta} \text{ and } G(\lambda) = \overline{\lambda}_{|H_{\zeta}}.$$

Example

An		

Example

Let *H* be a Hopf algebra and denote by $\zeta : H \to \text{End}_F(H^*)$ the homomorphism defined as follows for all $h, t \in H, \lambda \in H^*$:

 $(\zeta(h)\lambda)(t) := \lambda(th).$

Example

Let *H* be a Hopf algebra and denote by $\zeta : H \to \text{End}_F(H^*)$ the homomorphism defined as follows for all $h, t \in H, \lambda \in H^*$:

 $(\zeta(h)\lambda)(t) := \lambda(th).$

Then ζ is a *H*-module algebra structure on the algebra H^* and the

universal Hopf algebra of ζ is again (H, ζ).

Let *F* is an algebraically closed field, char F = 0 and $A = F[x]/(x^2)$.

Let *F* is an algebraically closed field, char F = 0 and $A = F[x]/(x^2)$. Consider *G* to be the cyclic group of order 2 with the generator *c*.

Let *F* is an algebraically closed field, char F = 0 and $A = F[x]/(x^2)$. Consider *G* to be the cyclic group of order 2 with the generator *c*. Define a *G*-action on *A* by $c\bar{x} = -\bar{x}$.

Let *F* is an algebraically closed field, char F = 0 and $A = F[x]/(x^2)$. Consider *G* to be the cyclic group of order 2 with the generator *c*. Define a *G*-action on *A* by $c\bar{x} = -\bar{x}$.

Then the universal Hopf algebra of the corresponding *FG*-action $\zeta_0: FG \to \text{End}_F(A)$ equals (H, ζ) where $H = F[y] \otimes FF^{\times}$, where the coalgebra structure on F[y] is defined by:

$$\Delta(y) = 1 \otimes y + y \otimes 1 \text{ and } \varepsilon(y) = 0.$$

Let *F* is an algebraically closed field, char F = 0 and $A = F[x]/(x^2)$. Consider *G* to be the cyclic group of order 2 with the generator *c*. Define a *G*-action on *A* by $c\bar{x} = -\bar{x}$.

Then the universal Hopf algebra of the corresponding *FG*-action $\zeta_0: FG \to \text{End}_F(A)$ equals (H, ζ) where $H = F[y] \otimes FF^{\times}$, where the coalgebra structure on F[y] is defined by:

$$\Delta(y) = 1 \otimes y + y \otimes 1 \text{ and } \varepsilon(y) = 0.$$

The antipode S of H and the action $\zeta : H \to End_F(A)$ are defined by

$$S(y^k \otimes \lambda) = (-1)^k y^k \otimes \lambda^{-1} \text{ and } \zeta(y^k \otimes \lambda) \overline{x} = \lambda$$

for $k \in \mathbb{Z}_+$ and $\lambda \in F^{\times}$.

Thank you!

AND REAL PROPERTY OF THE PROPE

Ana Agore

Equivalences of (co)module algebra structure

August 13, 2019 36 / 36