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STARTING POINT

Manin proved the existence of a universal coacting Hopf algebra
aut(A) on an algebra A:

Manin, Y.I. – Quantum groups and non-commutative geometry,
Centre de Recherches Mathématiques, Université de Montreal,
1988.
Tambara, D. – The coendomorphism bialgebra of an algebra. J.
Fac. Sci. Univ. Tokyo Math. 37 (1990), 425–456.
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STARTING POINT

Equivalent Gradings:

Definition
We say that gradings Γ: A =

⊕
g∈G A(g) and Γ

′
: A =

⊕
g′∈G′ A(g′) on an

algebra A, are equivalent, if there exists an automorphism ψ : A→ A of
algebras such that for any g ∈ supp Γa there exists g′ ∈ G′ such that
ψ(A(g)) = A(g′). If ψ = IdA, we say that Γ and Γ′ are realizations of the
same grading on A as, respectively, a G- and a G′-grading (or that Γ can
be regraded by G′).

asupp Γ := {g ∈ G | A(g) 6= 0} is called the support of the grading
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STARTING POINT

Definition
Let Γ be a group grading on an algebra A. Suppose that Γ admits a
realization as a GΓ-grading for some group GΓ and denote by κ the
corresponding embedding supp Γ ↪→ GΓ. We say that (GΓ,κ) is the
universal group of the grading Γ if for any realization of Γ as a grading
by a group G with ψ : supp Γ ↪→ G there exists a unique group
homomorphism ϕ : GΓ → G such that the following diagram is
commutative:

supp Γ
κ //

ψ
##

GΓ

ϕ

��
G
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STARTING POINT

(GΓ,κ) is the initial object of the category CΓ defined as follows:

The objects are all pairs (G, ψ) such that G is a group and Γ can be
realized as a G-grading with ψ : supp Γ ↪→ G being the embedding
of the support;

The morphisms between (G1, ψ1) and (G2, ψ2) are all group
homomorphisms f : G1 → G2 such that the diagram below is
commutative:

supp Γ
ψ1 //

ψ2 ""

G1

f
��

G2
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PRELIMINARIES

Comodule algebras:

Let H be a Hopf algebra.

An algebra A is called a (right) H-comodule
algebra if it admits a H-comodule structure ρ : A→ A⊗ H which is an
algebra homomorphism.

The map ρ is called a comodule algebra structure on A and will be
written in Sweedler notation as ρ(a) = a(0) ⊗ a(1), for all a ∈ A.

Any H-comodule algebra map ρ : A→ A⊗ H gives rise to an algebra
homomorphism ζ : H∗ → EndF(A) defined by: ζ(h∗)a = h∗(a(1))a(0) for
all a ∈ A and h∗ ∈ H∗.
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PRELIMINARIES

Module algebras:

An algebra A is called a (left) H-module algebra if it admits a H-module
structure such that:

h(ab) = (h(1)a)(h(2)b), h 1A = ε(h) 1A

for all a, b ∈ A, h ∈ H.

We denote by ζ the homomorphism of algebras H→ EndF(A) defined
by ζ(h)a = ha, for all h ∈ H and a ∈ A, and we call it a module algebra
structure on A.
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NOTATIONAL CONVENTIONS
In what follows F is a field;

AlgF (resp. CoalgF) - the category of (co)unital, (co)associative
(co)algebras over F;

HopfF - the category of Hopf algebras;

Let L : CoalgF → HopfF be the left adjoint for the forgetful functor
HopfF → CoalgF and we denote by η : idCoalgF

⇒ L the unit of this
adjunction;

Let R : AlgF → HopfF be the right adjoint for the forgetful functor
HopfF → AlgF.The counit of this adjunction will be denoted by
µ : R⇒ idAlgF

.
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SUPPORT EQUIVALENCE OF COMODULE STRUCTURES

Definition
Let A be an algebra, Hi Hopf algebras, i = 1,2 and assume there exists
an Hi-comodule algebra structure on A.

The two comodule algebra
structures on A are called support equivalent if

ζ1
(
H∗1
)

= ζ2
(
H∗2
)

where ζi is the algebra homomorphism H∗i → EndF(Ai) induced by the
comodule algebra structure on A.
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EQUIVALENCE OF COMODULE ALGEBRA STRUCTURES
SUPPORT

Let A be an H-comodule algebra via ρ : A→ A⊗ H and the
corresponding homomorphism of algebras ζ : H∗ → EndF(A).

Choose a basis (aα)α in A and let ρ(aα) =
∑

β aβ ⊗ hβα where hβα ∈ H.

Let C(ρ) be the F-linear span of all such hαβ ; C(ρ) is a subcoalgebra of
H:

∆(hαβ) =
∑
γ

hαγ ⊗ hγβ, ε(hαβ) = δα,β for all α, β.
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EQUIVALENCE OF COMODULE STRUCTURES

Proposition
Let A be an Hi-comodule algebra for Hopf algebras Hi, i = 1,2. Then the
two comodule algebra structures on A are equivalent if and only if there
exists an isomorphism of coalgebras τ : C(ρ1) →̃ C(ρ2) such that the
following diagram is commutative:

A

ρ2
##

ρ1 // A⊗ C(ρ1)

1A⊗τ
��

A⊗ C(ρ2)
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THE UNIVERSAL HOPF ALGEBRA

Construction:

Let ρ : A→ A⊗ H be a H-comodule algebra structure on A;

Choose a basis (aα)α in A and hαβ such that ρ(aα) =
∑

β aβ ⊗ hβα
and C(ρ) the F-linear span of all such hαβ ;

A remains a C(ρ)-comodule and therefore a L(C(ρ))-comodule.
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THE UNIVERSAL HOPF ALGEBRA

Construction:

Let aαaβ =
∑

γ k
γ
αβaγ for some structure constants kγαβ ∈ F and

denote by I0 the ideal of L(C(ρ)) generated by:∑
r,q

kγrqηC(ρ0)(hrα)ηC(ρ0)(hqβ)−
∑
u

kuαβηC(ρ0)(hγu)

for all possible choices of indices α, β, γ;

I0 is a coideal.
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THE UNIVERSAL HOPF ALGEBRA

Construction:

Let I be the ideal generated by spaces Sn(I0) for all n ∈ Z+ where S
is the antipode of L(C(ρ)). Obviously, I is a Hopf ideal and
Hρ := L(C(ρ))/I is a Hopf algebra;

Denote by η̄ : C(ρ)→ L(C(ρ))/I the map induced by ηC(ρ) and
define an Hρ-comodule algebra structure κρ on A by
κρ(aα) :=

∑
β aβ ⊗ η̄(hβα);

We call the pair
(
Hρ,κρ

)
the universal Hopf algebra of ρ.
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THE UNIVERSAL HOPF ALGEBRA
Consider the category CHA defined as follows:

1 The objects are H1-comodule algebra structures on the algebra A
equivalent to the given comodule algebra structure (H, ρ) (i.e.
H1-comodule algebra structures on A such that ζ1(H∗1) = ζ(H∗));

2 The morphisms from an H1-comodule algebra structure on A to an
H2-comodule algebra structure are all Hopf algebra
homomorphisms τ : H1 → H2 such that the following diagram is
commutative:

EndF(A) H∗2
ζ2oo

τ∗

��
H∗1

ζ1

cc
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homomorphisms τ : H1 → H2 such that the following diagram is
commutative:

EndF(A) H∗2
ζ2oo

τ∗

��
H∗1

ζ1

cc
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THE UNIVERSAL HOPF ALGEBRA

Theorem
The pair (Hρ,κρ) is the initial object of the category CHA .
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THE UNIVERSAL HOPF ALGEBRA

Connection to the universal group of a grading:

Theorem
Let Γ: A =

⊕
g∈G A(g) be a grading on an algebra A by a group G and

consider ρ : A→ A⊗ FG the corresponding comodule algebra map. If GΓ

is the universal group of Γ and ρΓ : A→ A⊗ FGΓ the corresponding
comodule algebra map, then (FGΓ, ρΓ) is the universal Hopf algebra of
the comodule algebra structure ρ.
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THE UNIVERSAL HOPF ALGEBRA AS A FUNCTOR

Given an algebra A, we define the category CA as follows:

1 The objects are pairs (H, ρ) where H is a Hopf algebra and
ρ : A→ A⊗ H is a right H-comodule algebra structure on A;

2 The morphisms between two objects (H1, ρ1) and (H2, ρ2) are
coalgebra homomorphisms τ : C(ρ1)→ C(ρ2) such that the
following diagram is commutative:

A ρ1 //

ρ2 ##

A⊗ C(ρ1)

idA⊗τ
��

A⊗ C(ρ2)
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THE UNIVERSAL HOPF ALGEBRA AS A FUNCTOR

Any morphism τ : (H1, ρ1)→ (H2, ρ2) in CA induces a Hopf algebra
homomorphism τ between the corresponding universal Hopf algebras
Hρ1 and Hρ2 , respectively.

Theorem
There exists a functor F : CA → HopfF given as follows:

F(H, ρ) = Hρ and F(τ) = τ .
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THE UNIVERSAL HOPF ALGEBRA

Hopf-Galois extensions:

Let ρ : A→ A⊗ H be a comodule algebra
structure on A and AcoH := {a ∈ A | ρ(a) = a⊗ 1H}. A is called a
Hopf–Galois extension of AcoH if the linear map
can : A⊗AcoH A→ A⊗ H defined below is bijective:

can(a⊗ b) := ab(0) ⊗ b(1).

Theorem
If A/AcoH is a Hopf–Galois extension then (H, ρ) is the universal Hopf
algebra of ρ.
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THE UNIVERSAL HOPF ALGEBRA

Corollary
Let H be a Hopf algebra. Then the universal Hopf algebra of the
H-comodule algebra structure on H defined by the comultiplication
∆: H→ H⊗ H is again (H,∆).
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THE UNIVERSAL HOPF ALGEBRA

Example
Let H be a Hopf algebra and A an H-module algebra. We denote by
A#H the corresponding smash product,

i.e. A#H = A⊗ H as a vector
space with multiplication given as follows:

(a#h)(b#g) = a(h(1) · b)#h(2)g

where we denote the element a⊗ h ∈ A⊗ H by a#h. We have an
H-comodule algebra structure on A#H given by:

ρ : A#H→ (A#H)⊗ H, ρ(a#h) = a#h(1) ⊗ h(2)

The universal Hopf algebra of ρ is (H, idA⊗∆).

Ana Agore Equivalences of (co)module algebra structures August 13, 2019 22 / 36



THE UNIVERSAL HOPF ALGEBRA

Example
Let H be a Hopf algebra and A an H-module algebra. We denote by
A#H the corresponding smash product, i.e. A#H = A⊗ H as a vector
space with multiplication given as follows:

(a#h)(b#g) = a(h(1) · b)#h(2)g

where we denote the element a⊗ h ∈ A⊗ H by a#h. We have an
H-comodule algebra structure on A#H given by:

ρ : A#H→ (A#H)⊗ H, ρ(a#h) = a#h(1) ⊗ h(2)

The universal Hopf algebra of ρ is (H, idA⊗∆).

Ana Agore Equivalences of (co)module algebra structures August 13, 2019 22 / 36



THE UNIVERSAL HOPF ALGEBRA

Example
Let H be a Hopf algebra and A an H-module algebra. We denote by
A#H the corresponding smash product, i.e. A#H = A⊗ H as a vector
space with multiplication given as follows:

(a#h)(b#g) = a(h(1) · b)#h(2)g

where we denote the element a⊗ h ∈ A⊗ H by a#h. We have an
H-comodule algebra structure on A#H given by:

ρ : A#H→ (A#H)⊗ H, ρ(a#h) = a#h(1) ⊗ h(2)

The universal Hopf algebra of ρ is (H, idA⊗∆).

Ana Agore Equivalences of (co)module algebra structures August 13, 2019 22 / 36



EQUIVALENCE OF MODULE STRUCTURES

Definition
Let A be an algebra, Hi Hopf algebras, i = 1,2 and assume there exists
an Hi-module algebra structure on A.

The two module algebra
structures on A are called equivalent if

ζ1
(
H1
)

= ζ2
(
H2
)

where ζi is the module algebra structure on A.

Ana Agore Equivalences of (co)module algebra structures August 13, 2019 23 / 36



EQUIVALENCE OF MODULE STRUCTURES

Definition
Let A be an algebra, Hi Hopf algebras, i = 1,2 and assume there exists
an Hi-module algebra structure on A. The two module algebra
structures on A are called equivalent if

ζ1
(
H1
)

= ζ2
(
H2
)

where ζi is the module algebra structure on A.

Ana Agore Equivalences of (co)module algebra structures August 13, 2019 23 / 36



EQUIVALENCE OF MODULE STRUCTURES

Proposition
Let ρi : A→ A⊗ Hi, i = 1,2, be two comodule algebra structures on an
algebra A where Hi are finite dimensional Hopf algebras and denote by
ζi : H∗i → EndF(A) the corresponding homomorphisms of algebras.

Then ρ1 and ρ2 are equivalent comodule algebra structures if and only if
ζ1 and ζ2 are equivalent module algebra structures.
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RATIONAL ACTIONS OF AFFINE ALGEBRAIC GROUPS

Let G be an affine algebraic group over an algebraically closed field F.

Then O(G) the algebra of regular functions on G is a Hopf algebra.

Suppose G is acting rationally by automorphisms on a finite
dimensional algebra A, i.e. for a given basis a1, . . . , an in A there exist
ωij ∈ O(G), where 1 6 i, j 6 n, such that gaj =

∑n
i=1 ωij(g)ai for all

1 6 j 6 n and g ∈ G.

1 A is an O(G)-comodule algebra where:
ρ(aj) :=

∑n
i=1 ai ⊗ ωij for 1 6 j 6 n.

2 A is an O(G)◦-module algebra:
f∗aj =

∑n
i=1 f∗(ωij)ai for all 1 6 j 6 n and f∗ ∈ O(G)◦.
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1 The Lie algebra g of G is the subspace consisting of all primitive
elements of O(G)◦, i.e. f∗ ∈ O(G)◦ such that
∆(f∗) = f∗ ⊗ 1 + 1⊗ f∗, and the g-action on A by derivations is just
the restriction of the O(G)◦-action

2 The group G itself can be identified with the group of group-like
elements of O(G)◦, i.e. f∗ ∈ O(G)◦ such that ∆(f∗) = f∗ ⊗ f∗.
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RATIONAL ACTIONS OF AFFINE ALGEBRAIC GROUPS

Three Hopf algebras are acting on A: O(G)◦, FG and U(g).

Theorem
Let G be a connected affine algebraic group over an algebraically closed
field F of characteristic 0 acting rationally by automorphisms on a finite
dimensional algebra A. Let g be the Lie algebra of G. Then the
corresponding FG-action, U(g)-action and O(G)◦-action on A are
equivalent.
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THE UNIVERSAL HOPF ALGEBRA
Construction:

Let ζ : H→ EndF(A) be an H-module algebra on A ;

For any H1-module algebra ζ1 : H1 → EndF(A) on A that is
equivalent to ζ there exists a unique Hopf algebra homomorphism
ϕ1 : H1 → R(ζ(H)) such that the following diagram commutes:

H1

ζ1 ##

ϕ1 // R(ζ(H))

ζ̃
��

ζ(H)

where we denote ζ̃ = µζ(H).
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THE UNIVERSAL HOPF ALGEBRA OF A MODULE ALGEBRA

Construction:

Consider the subalgebra Hζ of R(ζ(H)) generated by ϕ1(H1) for all
such structures ζ1;

Hζ is a Hopf algebra and ψζ := ζ̃
∣∣
Hζ

defines a Hζ -module algebra
structure on A;

We call (Hζ , ψζ) the universal Hopf algebra of ζ.
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THE UNIVERSAL HOPF ALGEBRA
Consider the category HCA defined as follows:

1 The objects are H1-module algebra structures on the algebra A
equivalent to the given module algebra structure (i.e. H1-module
algebra structures on A such that ζ1(H1) = ζ(H));

2 The morphisms from an H1-module algebra structure on A to an
H2-module algebra structure are all Hopf algebra homomorphisms
τ : H1 → H2 such that the following diagram is commutative:

EndF(A) H1
ζ1oo

τ

��
H2

ζ2

cc
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THE UNIVERSAL HOPF ALGEBRA

Theorem
The pair (Hζ , ψζ) is the final object of the category HCA.
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THE UNIVERSAL HOPF ALGEBRA AS A FUNCTOR
Given an algebra A, we define the category AC as follows:

1 The objects are pairs (H, ζ) where H is a Hopf algebra and
ζ : H→ EndF(A) is a left H-module algebra structure on A;

2 The morphisms between two objects (H, ζ) and (H′ , ζ ′) are
algebra homomorphisms λ : H/ker ζ → H′/ker ζ ′ such that the
following diagram is commutative:

H/ker ζ

λ
��

ζ̃ // EndF(A)

H′/ker ζ ′
ζ̃
′

99

where ζ̃ : H/ker ζ → EndF(A) (resp. ζ̃ ′ : H′/ker ζ ′ → EndF(A)) are
induced by ζ (resp. ζ ′)), i.e. ζ̃(x̃) = ζ(x) for all x̃ ∈ H/ker ζ.
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THE UNIVERSAL HOPF ALGEBRA AS A FUNCTOR

1 Any morphism λ : H/ker ζ → H′/ker ζ ′ in AC induces a Hopf
algebra homomorphism λ between R(ζ(H)) and R(ζ

′
(H′)),

respectively;

2 λ∣∣Hζ
⊆ H′

ζ′
.

Theorem
There exists a functor G : AC → HopfF given as follows:

G(H, ζ) = Hζ and G(λ) = λ∣∣Hζ
.
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THE UNIVERSAL HOPF ALGEBRA OF A MODULE ALGEBRA

Example

Let H be a Hopf algebra and denote by ζ : H→ EndF(H∗) the
homomorphism defined as follows for all h, t ∈ H, λ ∈ H∗:

(ζ(h)λ)(t) := λ(th).

Then ζ is a H-module algebra structure on the algebra H∗ and the

universal Hopf algebra of ζ is again (H, ζ).
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Example
Let F is an algebraically closed field, char F = 0 and A = F[x]/(x2).

Consider G to be the cyclic group of order 2 with the generator c.
Define a G-action on A by cx̄ = −x̄.

Then the universal Hopf algebra of the corresponding FG-action
ζ0 : FG→ EndF(A) equals (H, ζ) where H = F[y]⊗ FF×, where the
coalgebra structure on F[y] is defined by:

∆(y) = 1⊗ y + y ⊗ 1 and ε(y) = 0.

The antipode S of H and the action ζ : H→ EndF(A) are defined by

S(yk ⊗ λ) = (−1)kyk ⊗ λ−1 and ζ(yk ⊗ λ)x̄ = λ

for k ∈ Z+ and λ ∈ F×.
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Thank you!
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